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a b s t r a c t

This paper unravels an intrinsic shortcoming of several cohesive zone models, whereby commonly
adopted traction separation laws do not necessarily satisfy rotational equilibrium at the cohesive element
level. The necessary condition to ensure rotational equilibrium is derived. To demonstrate the error that
is caused by the lack of rotational equilibrium, examples for three traction separation laws are shown, for
both homogeneous and inhomogeneous deformation. For a large range of values of the critical opening
length the error scales almost linearly with this critical opening length. For large critical opening length
the error may even become significant, requiring the use of a traction separation law that satisfies the
condition for rotational equilibrium.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the early work by Dugdale on ductile materials [1] and on
quasi-brittle materials by Barenblatt [2], cohesive zone models
have been used extensively to describe failure in a wide variety
of materials and interfacial systems, see e.g. [3–5]. Research has
been done on e.g. metallic materials [6], composite materials [7–
9], and failure in polymer/metal interfaces [10–14], possibly
involving large deformations in the failure zone.

In literature much attention has been given to different aspects
of cohesive zone modeling. For example, the shape of the traction-
separation law [15,16], influence of mode-mixity [8], numerical is-
sues [17–20], large deformations [12] and thermodynamical con-
sistency [21,22] have been studied. However, one important
point that has not yet been addressed, concerns the rotational
equilibrium when using cohesive zone models.

Cohesive zone formulations are based on a traction continuity
condition. Whilst this approach naturally satisfies the balance of
forces, the rotational equilibrium is not necessarily satisfied, as
demonstrated in this paper.

The requirement on the traction-separation law in order to sat-
isfy rotational equilibrium at the structural level is derived. Dem-
onstration problems show the influence of the lack of rotational
equilibrium on the obtained results in the case of uniform and
non-uniform deformation. Especially when the critical opening
length is large, the lack of rotational equilibrium may be a real con-
cern for practical applications. Examples of such applications,
where the rotational equilibrium might require some detailed con-

sideration, can be found in e.g. [11,23,24]. Cohesive zone laws that
do not suffer from this intrinsic shortcoming are also identified.

2. Problem statement

In cohesive zone models, the material behavior is described by a
traction-opening relation instead of the classical stress–strain rela-
tion used in a continuum. Rotational equilibrium in a non-polar
continuum is equivalent with the requirement that the Cauchy
stress tensor is symmetric. For cohesive zone models this can not
be enforced as the full stress tensor is not available. The only equi-
librium requirement in cohesive zone models is continuity of trac-
tions. Note that, for large deformations, this should be a force
equilibrium and not a traction equilibrium [12]. However, as dem-
onstrated in this section, traction (or force) equilibrium is not a
sufficient condition to obtain rotational equilibrium as well, i.e.
the sum of all moments does not necessarily vanish in the de-
formed configuration.

2.1. Demonstration problem

The demonstration problem is shown in Fig. 1. It consists of a
single planar cohesive zone with length L and unit out-of-plane
thickness. Initially the top and bottom plane coincide. It should
be emphasized that the length L relates to the structural length,
not to the element size. Later, the influence of the structural length
L is addressed and it also shown that the analysis does not depend
on the element size.

During deformation the top and bottom plane remain parallel
and of the same length, i.e. the cohesive zone element deforms
homogeneously. The displacement of each point on the top plane
is described by the vector ~D ¼ ~Dn þ~Dt , where (n) and (t) indicate
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normal and tangential direction respectively. The angle of the
opening vector with respect to the y-axis is denoted by b.

The moment with respect to an arbitrary point in space is calcu-
lated as

~M ¼ ~MT þ ~MB ð1Þ

where

~MT ¼
Z L

0
~xT �~TT dx ð2Þ

~MB ¼
Z L

0
~xB �~TB dx ð3Þ

In this expression~TT and~TB are the Cauchy tractions acting on the top
and bottom planes of the cohesive zone respectively and � is the
cross product. The tractions are typically determined through the
use of a so-called traction-separation law (TSL), relating the traction
to the opening of the cohesive zone. It is common practice to decom-
pose the traction into its normal (n) and tangential (t) components.

2.2. TSL condition for rotational equilibrium

From the expression for the total moment, Eq. (1), a require-
ment on the traction-separation law to obtain rotational equilib-
rium can be easily derived. Using ~xT ¼~xB þ ~D, and traction
continuity (~T � ~TT ¼ �~TB), Eq. 1 can be written as

~M ¼ ~MT þ ~MB ð4Þ

¼
Z L

0
ð~xT �~T �~xB �~TÞdx ð5Þ

¼
Z L

0
ð~D�~TÞdx ð6Þ

and since, in this part, a homogeneous deformation state is consid-
ered the integrand is constant and the moment only vanishes when

Dt

Dn
¼ Tt

Tn
ð7Þ

It can thus be concluded that the traction vector should be aligned
with the opening vector to obtain a zero residual moment. In Sec-
tion 5 it is shown that this condition also yields rotational equilib-
rium in the case of non-homogeneous deformation.

It should be noted that such aligned traction vectors also exist in
some specific TSL, e.g. [12,25]. However, to the authors’ knowledge,
the relation between rotational equilibrium and alignment of TSL
has not been reported or exploited before. Note that the traction-
opening alignment of the TSL does not imply that mode dependency
can not be accounted for, as was shown for example in [26].

2.3. Residual moment

For aligned TSLs the residual moment automatically vanishes.
However, for non-aligned TSLs there is a residual moment, as illus-
trated here. For demonstration purposes, three different TSLs are

next considered of which the decoupled responses are shown in
Fig. 2, i.e. TnðDn;Dt ¼ 0Þ (left pictures) and TtðDt ;Dn ¼ 0Þ (right pic-
tures). The expressions for these traction-opening relations are
listed in Appendix A. In the Tvergaard [27] model, a determines
the ratio of the maximum tangential traction to the maximum nor-
mal traction: a ¼ Tt;max=Tn;max. It is important to note the different
definitions of the d parameters. For the Tvergaard and Geubelle &
Baylor [28] models these parameters give the opening at which
complete failure occurs whereas for the improved Xu-Needleman
[29] these are related to the opening at which the traction reaches
its maximum value.

The moment, as determined from Eq. (1), is plotted in Fig. 3 as a

function of the effective opening length D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n þ D2
t

q
for different

values of the loading angle b (see Fig. 1). The cohesive zone param-
eters are listed in Table 1 and the length L is taken equal to 1 mm.
From Fig. 3 it becomes clear that the residual moment is not zero,
except in pure mode I or mode II loading, corresponding to b ¼ 0
and b ¼ p=2, respectively.

3. Error formulation

In the previous sections it was shown that a cohesive zone ele-
ment is only in rotational equilibrium if the traction is aligned with
the opening. However, cohesive zone models employing non-
aligned traction-separation laws have been used extensively in
the literature for a wide range of applications. To assess the accu-
racy of these models it is necessary to qualify and quantify the con-
sequence of this deficiency.

3.1. Equivalent continuum

For the analysis, a continuum model is used that reveals the
same traction-opening behavior as the cohesive zone model. Be-
cause of the symmetry of the stress tensor the continuum remains
in rotational equilibrium. Note that the connection between a reg-
ular continuum and a cohesive zone model is not new (e.g. [30]),

Fig. 1. Homogeneously deformed cohesive zone element.

Fig. 2. Decoupled response of traction separation laws used in this study; (a)
quadratic, Tvergaard (T) (b) bi-linear, Geubelle & Baylor (G & B) (c) exponential,
improved Xu-Needleman (I X-N).
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