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a b s t r a c t

We present a complete numerical strategy based on tensor approximation techniques for the solution of
numerical homogenization problems with geometrical data coming from high resolution images. We first
introduce specific numerical treatments for the translation of image-based homogenization problems
into a tensor framework. It includes the tensor approximations in suitable tensor formats of fields of
material properties or indicator functions of multiple material phases recovered from segmented images.
We then introduce some variants of proper generalized decomposition (PGD) methods for the construc-
tion of tensor decompositions in different tensor formats of the solution of boundary value problems. A
new definition of PGD is introduced which allows the progressive construction of a Tucker decomposition
of the solution. This tensor format is well adapted to the present application and improves convergence
properties of tensor decompositions. Finally, we use a dual-based error estimator on quantities of interest
which was recently introduced in the context of PGD. We exhibit its specificities when it is used for
assessing the error on the homogenized properties of the heterogeneous material. We also provide a com-
plete goal-oriented adaptive strategy for the progressive construction of tensor decompositions (of pri-
mal and dual solutions) yielding to predictions of homogenized quantities with a prescribed accuracy.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the development of affordable high resolution imaging
techniques, such as X-ray microtomography, high resolution geo-
metrical characterization of material microstructures is increas-
ingly used in industry. However, the amount of informations that
are available is still difficult to handle in numerical models. This
is why dedicated approaches have been proposed in order to incor-
porate these informations for simulation purposes [57]. The most
used approach in this context is the voxel-based finite element
method introduced in [25,21], where each voxel of the model is
transformed into a finite element. The approach is straightforward
and automatic for the generation of the computational model (see
[43] for a review). However, it leads to huge numerical models, as
the number of elements corresponds to the number of voxels in the
image (in the order of 8 billion of elements for a full resolution
2000� 2000� 2000 voxels CT scan). In addition, the representa-
tion of the interfaces is not smooth, which induces local oscilla-
tions in the mechanical fields [9,53,40]. The size of the model can

be decreased with the use of an octree coarsening away from the
interfaces [40] or by decreasing the resolution of the image
[42,3,38]. However, this can severely decrease the geometrical
accuracy (more jagged interfaces) and increase the oscillations. In
order to get rid of these oscillations, mesh smoothing techniques
can be considered, e.g. [6]. Ultimately, full resolution images can
still be considered, using fast Fourier transforms (FFT) algorithms
[44] in the case of periodic problems.

A second class of approaches consists in extracting the material
interfaces from the image and then in constructing an unstruc-
tured conforming mesh from these informations, e.g. [41,56,57].
This allows to generate smooth interfaces and adapt the mesh in
order to master the size of the model. However, meshing complex
geometries is still difficult and usually requires human guidance.

Finally, non-conforming approaches can be considered (see
[54,13] among others): these approaches allows to avoid meshing
issues. In particular, the extended finite element method (X-FEM)
has been used by the authors for the treatment of 2D and 3D im-
age-based analysis [36,35,40]. An integrated approach was pro-
posed in order to incorporate the geometrical informations into
the numerical model. It is based on the use of Level-set functions
[51], for both segmentation and mechanical analysis. Thanks to
the use of tailored enrichment functions, it is possible to represent
the interfaces on a non-conforming mesh. The size of the numerical
model is decreased thanks to the use of an octree database that
enables to keep maximum geometrical accuracy near the
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interfaces. This allows to obtain a good compromise between easy
mesh generation and accuracy (both geometrical and mechanical).
More recently, an improvement was proposed by the use of a high-
order two mesh strategy that enables high geometrical and
mechanical accuracy on coarse meshes [37].

Despite of the improvements in the numerical efficiency of the
methods discussed above, image-based computations are still
computationally demanding, leading to time consuming studies
especially for large resolution images. There is still a need for
new approaches that would allow the efficient resolution of such
large scale problems.

This is why an alternative path is proposed in this paper. It re-
lies on the use of tensor approximation methods for the solution of
image-based homogenization problems. The basic idea is to inter-
pret 2 or 3-dimensional fields as 2 or 3-order tensors, and to use
tensor approximation methods for the approximate solution of
boundary value problems. The use of suitable tensor formats al-
lows to drastically reduce the computational costs (time and mem-
ory storage) and therefore allows the computation on very high
resolution images. This paper provides a complete tensor-based
numerical methodology, going from the translation of homogeni-
zation problems into a tensor framework, to the development of
a goal-oriented adaptive construction of tensor decompositions
based on error estimation methods, and dedicated to the present
application.

We first translate image-based homogenization problems to a
tensor framework by introducing suitable tensor approximations
of geometrical data. Tensor approximation methods are applied
to indicator functions of material phases, which are previously
smoothed in order to improve the convergence properties of their
decompositions. Suitable weak formulations of boundary value
problems preserving tensor format are introduced in order to
handle the different types of boundary conditions that are used
in classical numerical homogenization methods. Regarding the
construction of tensor approximations of the solution of PDEs,
we use proper generalized decomposition methods (PGD), which
is a family of methods for the construction of tensor decomposi-
tions without a priori information on the solution of the PDE
[10,45,46,28] (see [12] for a short review on PGD methods). Theo-
retical convergence properties have been recently obtained for a
class of PGD algorithms [15,7,16]. Note that a basic PGD algorithm
has been used in [11] for the numerical solution of PDEs with het-
erogeneous materials whose geometry is easily represented in a
tensor format. The method has also been used for deriving efficient
non-concurrent non-linear homogenization strategies [31].

Although PGD methods rely on general concepts in approxima-
tion of tensors, practical algorithms have only been provided for
the approximation in canonical tensor format. However, this for-
mat is known to have bad topological properties yielding ill-posed-
ness of best approximation problems in the set of rank-r canonical
tensors for d > 2 and r > 1 [52]. Greedy constructions of canonical
tensor decompositions allow to circumvent this issue but present
only poor convergence properties. Here, we introduce variants of
PGD algorithms for the construction of tensor decompositions in
different tensor formats. In particular, we introduce a new defini-
tion of PGD which allows the progressive construction of a Tucker
approximation of the solution. This tensor format is well adapted
to the present application and yields to improved convergence
properties of tensor decompositions. The subset of Tucker tensors
with bounded rank is known to possess nice topological properties
yielding well posedness and numerical stability of best approxima-
tion problems in these subsets [14]. Moreover, efficient algorithms
based on SVD have been proposed for computing quasi-optimal
Tucker approximations of a tensor, with controlled precision
[34]. The algorithm proposed in this paper can be interpreted as
an adaptive subspace-based model reduction method which con-

sists in constructing a sequence of reduced approximation spaces
extracted from successive rank-one corrections. An approximation
(in Tucker format) is then obtained by a projection on the tensor
product of these approximation spaces. The main drawback of
the use of Tucker tensors is that it suffers from the curse of dimen-
sionality. For dimension d > 3, a recent format coined ‘‘hierarchical
Tucker tensors’’ [19] combines the advantages of the canonical and
the Tucker tensors. This work is a first step toward the use of hier-
archical Tucker tensors within the PGD.

We finally devise a goal-oriented error estimation strategy in
order the assess the error on quantities of interest which are the
homogenized properties. Error estimation methods have been first
introduced in the context of PGD in [2,29]. Here, we use a classical
dual-based error estimator (see [1]), which has been used in [2] in
the context of PGD methods. The originality of the present contri-
bution consists in providing a complete adaptive strategy for the
progressive construction of tensor decompositions yielding to pre-
dictions of homogenized quantities with a prescribed accuracy.
Note that the proposed adaptive strategy could also be used in
other context for goal-oriented approximation of PDEs in tensor
formats.

The outline is as follows: Section 2 presents the homogenization
problems and their variational formulations. Section 3 introduces
the tensor framework and notations used for separated representa-
tions. Then Section 4 presents how the solution of PDEs can be
approximated under separated representations with the PGD. In
particular, we detail a new algorithm for the progressive construc-
tion of a Tucker decomposition. Next, image geometry and bound-
ary conditions are expressed in a tensor format in Section 5. First
numerical examples are introduced in Section 6. Then, in section
7, we introduce a goal-oriented adaptive algorithm using error
estimators on homogenized properties. Finally, the article presents
an application on a cast iron image extracted from a tomography,
where we use the complete goal-oriented adaptive solution
method.

2. Homogenization problems and variational formulations

In this section, we introduce classical homogenization methods
for a linear heat diffusion problem. Homogenization problems are
boundary value problems formulated on a domain X which consti-
tutes a representative volume of an heterogeneous material. The
solution of these problems allows to extract effective for apparent
macroscopic properties of the material depending on whether X is
larger than the representative volume element (RVE). Note how-
ever that the prediction of the size of the representative volume
is out of the scope of this paper. The reader can refer to
[23,24,48,39] for methodologies to estimate the size of the repre-
sentative volume. In the following, we will identify both apparent
and homogenized properties.

2.1. Scale transition and localization problems

We denote by u and q the temperature and flux fields respec-
tively. The macroscopic gradient of the field ruM and the macro-
scopic flux qM are defined through a spatial averaging of the
corresponding microscopic quantities ru and q over the represen-
tative volume X:

ruM ¼ hrui ¼ 1
jXj

Z
X
rudX ð1Þ

qM ¼ hqi ¼ 1
jXj

Z
X

qdX ð2Þ

The inverse process yielding the microscopic fields from the macro-
scopic ones is called localization. Given ruM or qM , microscopic
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