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1. Introduction

The investigations of blood flow through arteries are of
considerable importance in many cardiovascular diseases
particularly atherosclerosis (Nagarani and Sarojamma, 2008).
Vast amount of studies have been made to study blood flow
through arteries (Mekheimer and Et Kot, 2008; Sankar and
Hemalatha, 2006; Sankar and Lee, 2009). Recently, heat transfer
analysis have been received the attention (Nadeem and Akbar,
2009; Srinivas and Gayathri, 2009; Srinivas and Kothandapani,
2008; Srinivas et al., 2009) due to its large number of
applications in processes like hemodialysis and oxygenation.
Bioheat is currently considered as heat transfer in the human
body. In view of this thermotherapy and the human thermoreg-
ulation system (Srinivas and Kothandapani, 2008), the model of
bioheat transfer in tissues has been attracted by the biomedical
engineers. In fact the heat transfer in human tissues involves
complicated processes such as heat conduction in tissues, heat
transfer due to perfusion of the arterial–venous blood through
the pores of the tissue, metabolic heat generation and external
interactions such as electromagnetic radiation emitted from cell
phones. In the recent past, the study of the combined effects of
heat and mass transfer on biofluids has become quite interesting
to many researchers both from the theoretical and experimental

or clinical point of view (Chakravarty and Sen, 2005; Eldabe
et al., 2007; Nadeem and Akbar, 2009). Most of the studies
concentrated only on the heat transfer (Khanafer et al., 2007;
Ogulu and Abbey, 2005) to blood flowing through the arteries
but limited attentions have been focused to study the mass
transport processes (Kawase and Ulbrecht, 1983; Valencia and
Villanueva, 2006). There might be so many reasons on tackling
blood flow in problems the presence of mass transfer. One major
problem is highlighted by (Friedman and Ehrlich, 1975) that the
problems of mass transport are highly convection dominated
because of the low diffusion coefficients of the principal
constituents govern.

In view of the above analysis, the aim of the present article is to
discuss the heat and mass transfer effects on the blood flow of a
Walter’s B fluid (Baris, 2002) through a tapered artery with a
stenosis. The governing equations are solved analytically by
regular perturbation method. The expression for velocity, temper-
ature, concentration, resistance impedance, wall shear stress and
shearing stress at the stenosis throat have been calculated. At the
end, the physical features of various emerging parameters have
been discussed by plotting the graphs. Trapping phenomena have
been discussed at the end of the article.

2. Mathematical formulation

Let us consider the flow of an incompressible Walter’s B fluid
lying in a tube having length L. We are considering cylindrical
coordinates system r̄; ū; z̄

� �
such that ū, v̄ and w̄ are the velocity
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components in r̄, ū and z̄ direction respectively. Heat and mass
transfer phenomena are taken into account by giving temperature
T̄1 and concentration C̄1 to the wall of the tube, while at the centre
of the tube we are considering symmetry condition on both
temperature and concentration. Followed by Mekheimer and
Et Kot (2008), the geometry of the stenosis which is assumed to be
symmetric is defined as

hðzÞ ¼ dðzÞ½1� h1ðb
n�1ðz� aÞ � ðz� aÞnÞ�;

a � z � aþ b;
a ¼ dðzÞ; otherwise

(1)

with

dðzÞ ¼ d0 þ jz; (2)

where d(z) is the radius of the tapered arterial segment in the
stenotic region, d0 is the radius of the non-tapered artery in the
non-stenoic region, j is the tapering parameter, b is the length of
stenosis, (n � 2) is a parameter determining the shape of the
constriction profile and referred to as the shape parameter (the
symmetric stenosis occurs for n = 2) and a indicates its location as
shown in Fig. 1. The parameter h is defined as

h ¼ d�n
n

n�1

d0bnðn� 1Þ
; (3)

The flow equations in the presence of heat and mass transfer are
defined as

@ū

@r̄
þ ū

r̄
þ @w̄

@z̄
¼ 0; (4)
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ū ¼ � @ p̄

@r̄
þ 1

r̄

@
@r̄

r̄t̄r̄r̄ð Þ þ @
@z̄

t̄r̄z̄ð Þ �
t̄ūū

r̄
; (5)

r ū
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In the above equations, p̄ is the pressure ū, w̄ are the respective
velocity components in the radial and axial directions respec-
tively, T̄ is the temperature, C̄ is the concentration of fluid, r is the
density, k denotes the thermal conductivity, cp is the specific heat
at constant pressure, Tm is the temperature of the medium, D is
the coefficients of mass diffusivity, KT is the thermal-diffusion
ratio.

The constitutive equation for Walter’s B fluid is given by Baris
(2002)

t̄ ¼ 2h0e� 2k0
de

dt
; (9a)

e ¼$V þ $Vð ÞT; (9b)

de

dt
¼ @e

@t
þ V:re� e$V � $Vð ÞTe; (9c)

in which t̄ is the extra stress tensor, h0 is the coefficient of
viscosity, e is the rate of strain tensor and d/dt denotes the
convected differentiation of a tensor quantity in relation to the
material motion.

We introduce the non-dimensional variables

r ¼ r̄

d0
; z ¼ z̄

b
; w ¼ w̄

u0
; u ¼ bū

u0d
; p ¼ d2

0 p̄
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;
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0

c pT̄0
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k
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� � ;

(10)

Nomenclature

Br Brickmann number

cp specific heat

D coefficients of mass diffusivity

k thermal conductivity

KT thermal-diffusion ratio

M Hartmann number

n stenosis shape

Q flow rate

Sc Schmidt number

Sr Soret number

T̄ temperature

Tm temperature of the medium

u velocity component in r-direction

w velocity component in z-direction

Greek symbols

a Walter’s B fluid parameter

d height of the stenosis

m Kinmatic viscosity

n Kinematic viscosity

r Density of the fluid

f tapered angle

[(Fig._1)TD$FIG]

Fig. 1. Geometry of an axially nonsymmetrical stenosis in the artery.
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