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a b s t r a c t

This paper presents three-level residual-based turbulence models for the incompressible Navier–Stokes
equations. Employing the variational multiscale (VMS) framework, the velocity and pressure fields are
decomposed into two overlapping hierarchical scales, thereby leading to a system of coupled mixed field
problems. The mixed problem at the fine scales is stabilized via a subsequent VMS application that results
in a further decomposition of the fine-scale velocity field into level-I and level-II scales. The level-II scales
are modeled using higher-order bubble functions that are then variationally embedded in the level-I
formulation to stabilize it. The level-I problem is modeled via a second set of bubble functions that are
linearly independent of the bubbles employed at level-II. Finally, the resulting level-I fine-scales are var-
iationally embedded in the coarse-scale formulation. This yields a residual-based turbulence model for the
larger or coarser-scales. A significant feature of the proposed method is that it results in a concurrent top-
down and bottom up two-way nesting of the scales. In addition, the resulting turbulence model does not
possess any embedded tunable parameters. Another attribute of the formulation is that the fine scales at
every level are driven by the residuals of the Euler–Lagrange equations of the coarser scales at the preced-
ing levels, thereby resulting in a method that is variationally consistent. Various algorithmic generaliza-
tions of the method are presented that lead to computationally economic residual-based turbulence
models. The proposed telescopic depth in scales approach helps make these models accurate for low order
tetrahedral and hexahedral elements, a feature that is facilitated by the higher-order bubble functions
over element interiors and it results in an enhanced representation of the fine-scale terms modeling
the fine viscous effects. From a computational perspective this method results in easy-to-implement
equal-order pressure–velocity elements, and possesses the desirable p-refinement feature. Numerical
performance of the method is assessed on turbulent channel flow problems at Re ¼ 395 and Re ¼ 590. Also
presented are the results for turbulent SD-7003 airfoil at Re ¼ 60;000 and comparison is made with the
published experimental data and numerical results.

� 2012 Published by Elsevier B.V.

1. Introduction

Large eddy simulation (LES) is a numerical technique that re-
solves the larger features in the flow and models the effects of
the smaller features. It is a powerful tool to study turbulent flows
[38,24,14,9,33,26] and is computationally less expensive than Di-
rect Numerical Simulation (DNS) [34] that tries to resolve all the
scales in the problem.

This paper presents residual-based turbulence models that are
derived via a nested application of the variational multiscale
(VMS) ideas. The VMS framework assumes an overlapping additive
decomposition of the unknown solution fields into coarse and fine-
scale components and it was proposed by Hughes [17] as the basis
for the development of stabilized methods. Variational multiscale

ideas were extended to turbulence models [18–20,7,35] where
coarse- and fine-scales were interpreted as the low and high wave
numbers that were associated with the larger and smaller features
in the flow. Some recent works that employ VMS ideas are
[23,15,10,2,6,1,3,13,16] wherein larger structures in the flow are
numerically resolved and finer structures are modeled, a feature
that is common with the LES modeling ideas.

The present paper is an extension of our earlier work on the
development of residual-based turbulence models [31] for the
incompressible Navier–Stokes equations. In Ref. [31], we assumed
an overlapping additive decomposition of only the velocity field,
while the pressure field was not decomposed. Consequently, the
fine-scale problem was a function of the coarse and fine velocity,
and the coarse pressure field. A bubble functions based approach
was adopted to extract the model for the spatio-temporal fine-
scale velocity field that was then variationally embedded in the
coarse-scale problem to yield the residual-based turbulence model.
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Numerical investigations with the method prompted us to add an
element level divergence term for an improved representation of
the local conservation of mass property. This formulation worked
well for linear hexahedral elements and a variety of benchmark
tests were carried out. An application of the method to tetrahedral
element meshes manifested the inherent stiff response of the low
order tetrahedra. This characteristic feature of the low order tetra-
hedral elements has been reported in the literature, primarily in
the area of solid mechanics [39,37]. This prompted us to revisit
our line of thought for the residual-based turbulence models and
develop enhanced representations of fine scale fields that could
compensate for the inherent stiffness of the lower order Lagrange
elements. The models presented in [31] were based on an en-
hanced representation of the fine-scale velocity field and it was
an extension of our earlier works on convection dominated flows
[27,28,30,5] where fine-scale velocity was assumed piece-wise
constant in time. In other words, a more general representation
of the fine scale velocity field had resulted in a refined fine scale
model which had in turn resulted in a residual-based turbulence
model that worked well for the hexahedral elements.

Our motivation in this work is to further develop the refined
representations of the fine-scale velocity and pressure fields that
can compensate for the inherently stiff response of the low-order
tetrahedral elements. We perform a nested and hierarchical
application of the VMS method, and from the onset, assume a
multiscale decomposition of both the velocity and pressure fields.
Consequently, the problem that governs fine scales is also a mixed
field problem, and therefore it needs to be stabilized if arbitrary
interpolation functions are to be used for the fine-scale velocity
and pressure fields. To accomplish this, we perform another appli-
cation of the VMS ideas, and further decompose the fine-scale
velocity into two overlapping components termed as fine-scales le-
vel-I and level-II. The goal of level-II scales is to provide VMS based
stabilization to the system of equations governing level-I scales.
Subsequent variational projection of the fine-scales that are ob-
tained from the stabilized level-I equations, onto the coarse scale
problem, yields the desired turbulence model. While the coarse
scales are interpolated using standard shape functions, level-I
and level-II scales are modeled employing bubble functions.
Specifically, the presence of fine-scale pressure field allows us to
consistently derive terms that are analogous to the so-called
‘‘div-stabilization’’ term, which help improve the conservation of
mass property in the model. We describe this aspect further in
Section 3.1.

The remaining part of the paper is organized as follows. The
Navier–Stokes equations and their weak formulation are presented
in Section 2. In Section 3 we derive the three-scale residual-based
turbulence model employing the variational multiscale frame-
work. In Section 3 the detailed development of the fine-scale mod-
el is presented and the various modeling simplifications that are
taken into consideration are discussed. Section 4 presents several
numerical tests to show the accuracy of the formulation for
unstructured tetrahedral meshes. Section 4.1 considers a turbulent
channel flow which is a classical benchmark problem for validating
turbulence models. We compare our results with reference DNS
solutions and with other LES models published in the literature
[2,31]. We also propose some algorithmic simplifications for com-
putational economy that yield some variants of the underlying
model, and study the effects of these simplifications on the com-
puted solution. Specifically we investigate the effects of diagonal-
ization of the second order tensor s that arises in the derivation
of the turbulence models. The effects of the modeling simplifica-
tions related to the temporal domain are also investigated. In
Section 4.2 we study flow around an airfoil at Reynolds numbers
60,000 to show the applicability of our method to more complex
problems. Conclusions are drawn in Section 5.

2. The incompressible Navier–Stokes equations

Let X � R3 be a connected, open, bounded domain with
piecewise smooth boundary C. Let v : X��0; T½! R3 be the velocity
field and p : X��0; T½! R be the kinematic pressure field. The
incompressible Navier–Stokes equations can be written in the
space–time domain X��0; T½ as follows:

@v
@t
þr � ðv � vÞ � 2mr � eðvÞ þ rp ¼ f in X ð1Þ

r � v ¼ 0 in X ð2Þ

v ¼ g on C ð3Þ

vðx;0Þ ¼ v0 in X ð4Þ

where f : X��0; T½! R3 is the body force (per unit of mass), v > 0 is
the kinematic viscosity (assumed constant), v0 is the initial condi-
tion for the velocity field which satisfies the condition that
r � v0 ¼ 0, g represents the Dirichlet boundary conditions, and �
denotes tensor product. The strain-rate tensor is defined as
eðvÞ ¼ rsv ¼ ½rv þ ðrvÞT �=2. Eq. (1) is the momentum balance
equation; Eq. (2) enforces the incompressibility constraint; Eq. (3)
is the Dirichlet boundary condition; and Eq. (4) is the initial
condition.

Let wðxÞ 2 v ¼ ðH1
0ðXÞÞ

3 and qðxÞ 2 Q ¼ C0ðXÞ \ L2ðXÞ represent
the weighting functions for the velocity and pressure fields, respec-
tively. The appropriate spaces of functions for the velocity and
pressure trial solutions are the corresponding time-dependent
spaces S and P that satisfy the initial and boundary conditions.
The standard weak form of the problem defined in (1)–(4) is: Find
vðx; tÞ 2S and pðx; tÞ 2 P such that for all wðxÞ 2 v and qðxÞ 2 Q,

w;
@v
@t

� �
� ðrw;v � vÞ þ ðrsw;2mrsvÞ � ðr �w; pÞ ¼ ðw; f Þ

ð5Þ

ðq;r � vÞ ¼ 0 ð6Þ

where ð�; �Þ ¼
R

Xð�ÞdX is the L2ðXÞ-inner product. Eqs. (5) and (6)
imply weak satisfaction of the momentum balance equations and
the continuity equation, in addition to the initial condition.

Remark: The shape functions of the linear tetrahedral element
are incomplete Lagrange polynomials that do not possess the cross
terms. As a result, the cross derivative are zero, and therefore cross
terms in the weak form (5) and (6) are not accurately represented.
This makes tetrahedral elements behave stiff as compared to the
hexahedral elements that are complete Lagrange polynomials
and therefore possess the cross terms.

Remark: The objective in Section 3 is to develop a formulation
for tetrahedral elements that is able to model the smallest features
in the solution of (5) and (6) via a better representation of fine scale
viscous terms, thereby overcoming the limitations of the standard
tetrahedral elements.

Remark: Use of tetrahedral elements in computational mechan-
ics has primarily been attempted in the domain of solid and
structural mechanics [39,37]. The stiff behavior of linear tetrahe-
dral elements was recognized early on because of the constant
strain nature of the fields produced by it. In the case of fluid
mechanics where viscous term plays a significant role, the lack of
cross terms in the expansion of the interpolation functions over
the parent element domain becomes a serious impediment in an
accurate representation of the viscous term. It is important to note
that linear hexahedral elements and the 10-noded tetrahedral
elements contain cross terms in the parent domain that provide
them the flexibility to better represent the viscous terms.
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