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a b s t r a c t

We propose a modular approach for generalized computational mechanics in mesostructured continua,
namely the archetype blending continuum (ABC) theory. The theory’s modularity derives from its math-
ematical constructors: archetypes, or building blocks that all multi-component material laws are gener-
ated from. These archetypes are the means used to discretize a description of material motion that relies
on the fundamental theorem of calculus, an approach that contrasts the Taylor series expansions that
underlie previous generalized continuum kinematics. All enhanced continuum methods to date assume
embedded scales may be seen as separable material points in larger domains, an assumption that creates
unnecessary restrictions on the constitutive modeler and makes the additional stress tensors introduced
far less physical. The ABC theory removes that assumption and provides mesostructural basis for higher
order stress quantities by attributing them separately to archetypes and their interactions. In this man-
ner, ABC is a bridge between generalized continuum mechanics and micromechanics, two well-estab-
lished fields. Thus, a multi-component material design space may be probed with the ABC theory by
adding and removing archetype modules or by refining archetypes themselves. This work presents the
mathematics and ingredients for finite element implementation of the theory so that others may build
on the specific demonstrations for solid mechanics explored here: multi-component elasticity and
multi-crystal plasticity. Abstract extensions of the ABC theory into stochastic space and multiphysics
problems are also briefly propounded.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and philosophy

Materials are modular. That is, microstructured materials are
aggregates of individual components. We hereafter collectively re-
fer to these aggregates as multi-component materials. The compo-
nents define material building blocks, termed archetypes,1 which
by different synthesis and processing techniques self-assemble to
form a complex mesostructure or conformation. In general, arche-
types contain their own sub-structures, meaning they are submor-
phic, and their self-assembly generates new mesoscale structures
defining material mesomorphism. A multi-component material’s con-
formation has a set of apparent properties that depends on the prop-
erties of the archetypes, their interactions, and their mesomorphism;
this property set has recently been referred to as a material genome
[2]. An analogy may be found in Lego building blocks: an archetype

corresponds to an individual brick whose interior is described by
submorphism. An arrangement of interlocking bricks would corre-
spond to a conformation and the resulting mesoscale pattern to mes-
omorphism. The entirety of properties of this assembly is the
system’s genome. The mesoscopic intersection of archetypes is
where modern mechanics research opportunities abound: the scale
is too large for explicit descriptions but too small for traditional con-
tinuum mechanics. Representative examples of archetypes, their
conformations, and dependent macroscopic phenomenologies are
shown in Fig. 1(a).

Take for example crystals as archetypes. In Fig. 1(a), we see that
intermetallic phases segregate from matrix crystals to create a
complex mesostructure that controls fracture processes. The differ-
ent archetypes form in response to a favorable energetic state
(meta-stable) during heating and subsequent cooling (heat treat-
ment or processing) of the alloy. In filled elastomers, pure amor-
phous polymer hydrocarbon chains have random submorphism
while the reinforcing fillers like silica, carbon black, or nanoclay
have crystalline submorphic order. The nanocomposite self-assem-
bles to form filler networks at the mesoscale. Processing induces in
these networks distinct interphase zones whose properties are
derivatives of polymer and filler. The interplay of these mesoscale
features characterizes nanocomposite failure modes, such as craz-
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ing or tearing. A pronounced structural hierarchy also exists in
bone tissue [3,4] that arises from the subsequent assembly of tro-
pocollagen macromolecules, impure hydroxyapatite minerals, and
non-collagenous organic material (archetypes) to form the struc-
tural levels: microfibrils, fibril arrays, oriented lamellar structures
similar to fiber-reinforced composites with a pseudo-random
stacking structure, and porous spongy networks or haversian sys-
tems (depending on the type of bone tissue) that underlie the mac-
roscopic bone. These complex mesostructures are what give rise to
a bone that is simultaneously light and tough [5].

The same logical picture extends to all other heterogeneous
materials. The theory we propose herein transforms this abstract
picture of materials – archetypes and their conformations – to a
mathematically rigorous but simple generalized continuum
mechanics theory suitable for many applications in science and
engineering. The proposed archetype-blending continuum (ABC)
theory connects micromechanics and generalized continuum
mechanics (Fig. 1(b)), a simple concept but vitally important. By
doing so, limitations in each field are overcome, and new opportu-
nities for predictive continuum modeling of complex materials
abound.

The broad field of micromechanics essays to predict bottom-up
apparent properties of a material through analysis and blending
(i.e., homogenization) of its components and their interfaces (or
discontinuities), as it is well known that heterogeneous materials
derive their suitability for application from these two entities. A fi-
ber-reinforced composite can have a strong matrix and stiff fibers,
yet if cohesion is lost at their interface, the material is weakened
and rendered unsuitable. The reader is referred to [6–10] for more
extended discussions of micromechanical methods. A common
thread to micromechanics theories is that they condense all meso-
structural information into a single constitutive law, which is var-
iationally conjugate to a single mesoscale velocity field
representing the blend. Micromechanics thus limits its predictive
reach for multi-component materials by assigning a single meso-
scale kinetic energy for the homogenized mesostructure, thereby
losing the ability to track energy distributions within the deform-
ing blend. Simply put, there are too few degrees of freedom to rep-
resent a complex mesoscale for any detailed dynamic analysis.
More general continuum theories are thus of interest.

Generalized continuum mechanics is a broad field that attempts
to introduce structural information into a continuum model with-
out its explicit representation. It is assumed that a continuum
cloak overlays the complex material structure. The complexity of
the material is accounted for by an enhanced variational statement
that includes additional degrees of freedom and/or derivatives
thereof to offer a continuum summary of material motion at differ-
ent length scales. Gradient elasticity theories of the mid 1900’s
(e.g., [11–14]) and gradient-based research thereafter in both non-
linear elasticity [15,16] and plasticity [17–21] represent general-
izations of the variational statement to include higher derivatives
of kinematic variables. Kröner [22] has provided inspiring discus-
sion on physical interpretation of the torque stresses that arise in
high gradient theories as reactions against lattice bending or tor-
sion. Besides these high gradient theories, nonlocal theories of the
integral type [23,24] have been introduced to provide both a micro-
structural basis to damage and use deformation surrounding a
point to influence that point’s constitutive law. Finally, a separate
class of enriched continuum theories are the high order type, i.e.,
those with additional kinematic variables.

High-order continua began with the transformative work by the
Cosserat brothers [25], who introduced additional couple stresses
by postulating local micro-rotations independent of the macro-
rotations. Micromorphic extensions that represent more general
hidden deformabilities of a material point then ensued [26–31].
Additional fields allow the modeler to maintain the computational
efficiency congenital to continuum descriptions and compete with
direct numerical simulation (DNS) methods in modeling complex
material behavior across multiple length scales. These theories
act to both improve predictive capability in situations where size
effects exist [32,18,33–35, eg.] and improve numerical properties
of the governing equations by alleviating mesh sensitivity to local-
ization phenomena [36,31,37]. High-order theories are particu-

larly useful when the scales of stress variation and mesostructure
intersect, with application in high-frequency wave propagation
[38,39], localization and failure (shear bands, fracture modes) in
metals [30,31,40–44], granular materials [37], brittle composites
[45], and filled [46] or porous [47] elastomers.

Though these theories mean to overcome micromechanics lim-
itations by introducing additional degrees of freedom, a disconnect

Fig. 1. The applicability and overarching philosophy of the ABC theory.
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