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a b s t r a c t

In the present paper, a high-speed adaptive meshing using a hierarchical mesh is studied. We use the
level-of-detail approximations of the mesh data structure used often in the computer graphics field. To
achieve the correct level of detail, we employ the hierarchical regional partitions. Meshes using this data
structure can be realized in a very quick manner. Finally, we apply the level of detail approximation to the
adaptive analyses of crack propagation, demonstrating the efficiency of the present method.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the data handling for computer graphics
field is usually very time-consuming. To speed up the rendering,
a 3D object is often treated with a set of level-of-detail (LOD)
approximations, where a detailed mesh is used when the object
is close to the viewer and coarser approximations when the object
is away [1,2]. The LOD approximations need be pre-computed by
mesh simplification methods [3–8]. For efficient data storage and
transmission, mesh compression schemes [9,10] have also been
developed. Hoppe [11,12] studied the progressive mesh (PM) rep-
resentation, a new mesh format that provides a unified solution to
these problems.

In the finite element analysis, on the other hand, time depen-
dent problems such as the dynamic analysis are often more
time-consuming than the rendering of the 3D detailed objects.
Therefore, to reduce the calculation time, the adaptive analyses
have been developed and applied to the large-scale complex prob-
lems. The adaptive analyses have been studied with advanced
mesh generations, mesh update and parallel search techniques
[13,14]. Also, the adaptive mesh approaches have been studied
based on the Enhanced-Discretization Interface-Capturing Tech-
nique (EDICT) with the two-levels of meshes or a combination of

coarse and fine meshes [15–17], which have been applied to com-
pressible flows with shocks [15] and free-surface flows [17].

The present paper applies the LOD approximations to the adap-
tive analysis [18–20] of the FEM, which consists of the posterior er-
ror estimation and the re-meshing based on the result of the above
error estimation. These steps are repeated many times together
with the adaptive calculation, where we utilize an efficient re-
meshing method that employs the above progressive mesh (PM)
representation, which has been used in the rendering techniques
to reduce the computer cost. First, we create a fine mesh for an en-
tire domain using a meshing technique such as the Delaunay trian-
gulation, which is called here as the mother mesh. Second, the
progressive meshing is performed on this mother mesh, which re-
sults in a hierarchical mesh. Third, an adaptive FEM and a posterior
error analysis are performed based on the hierarchical mesh.
Although the CPU time required for preprocessing is considerable,
the adaptive meshing process is so fast. Thus, the present method
is very efficient in many classes of problems, particularly for prob-
lems of slow convergence and long time-evolution.

Here, we take a 2D elasticity problem with the Zienkiewicz–
Zhu’s method [19] as the posterior error estimation, where we call
the zero-dimensional simplex a ‘‘vertex’’, the one-dimensional
simplex an ‘‘edge’’, the two-dimensional simplex or the so-called
triangle an ‘‘element’’, and the triangulated body of an entire region
a ‘‘mesh’’. In addition, we call the element where linear shape func-
tions are embedded a ‘‘1st-order element’’ and the element where
quadratic or cubic shape functions are embedded ‘‘2nd-order
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element’’ or ‘‘3rd-order element’’, respectively. It is noted that the
1st-order element has three nodes, the 2nd-order element six
nodes, and the 3rd-order element ten nodes, respectively.

As is well-known, it has been an issue of fracture mechanics to
solve exactly the crack propagation problems in mixed-mode con-
dition [21–24]. First of all, the crack propagation analyses require
high accuracy around crack tips. If a standard finite element meth-
od is used, the fine meshes with high-quality elements are needed
around the crack tips. This is very difficult for the propagating
cracks due to the high calculation cost. Recently, the extended fi-
nite element method (XFEM) [25–27] and the mesh-free [28–33]
method, which can perform high accuracy analyses without rely-
ing on meshes are researched in order to avoid the complex reme-
shing problems.

The XFEM is a method to model discontinuities and singularities
independently of the mesh using enrich functions. In the crack
propagation problems using the XFEM, even if relatively coarse
elements are arranged around the crack tips, the high accuracy
analyses are performed. Additionally, the efficient analyses are per-
formed because the models of the cracks are completed by extend-
ing simplify the crack lines or surfaces. Among the mesh-free
methods, there are the methods using only nodal data such as
Smoothed Particle Hydrodynamics: SPH [28,29] and so on and
those using both nodal data and background cell for integration
such as Element Free Galerkin Method: EFGM [30–33] and so on.
Recently, the method coupling the XFEM and the EFGM [21,34,35]
has been developed. The XFEM and the mesh-free method have
been developed in order to avoid the complex remeshing problems.

On the other hand, if the high-quality, fast and automatic adap-
tive remeshing can be performed, the adaptive finite element anal-
yses are performed with the same level of accuracy and calculation
cost as the XFEM and the EFGM. Therefore, the hierarchical mesh is
applied here to the adaptive crack propagation problems.

In the following section, we describe an adaptive analysis in
general and Section 3 covers the generation and the properties of
the hierarchical mesh. In Section 4, we discuss an issue of the hier-
archical mesh in the case of the adaptive analysis with a solution to
it. Some numerical results on the crack propagation problems are
given in Section 5 and we conclude the present paper in Section 6.

2. Adaptive analysis

Fig. 1(a) shows the flowchart of the traditional adaptive analysis
method. If the value of the posterior error is larger than that of the
maximum permissible error, re-meshing based on the posterior er-
ror is performed. If this is not the case, the calculation is finished.
On the other hand, the present method is characterized by the
new preprocessing: the hierarchical mesh generation, as shown
in Fig. 1(b).

2.1. Posterior error estimation

First, a scalar quantity kEk in each element is defined as

kEk2 �
Z

Xe
rTrdX; ð1Þ

where
R

Xe ðÞdX is the integral over the element region Xe, and r is
the stress.

Next, an index of error is defined as

kek2 �
Z

Xe
ðr� r̂ÞTðr� r̂ÞdX; ð2Þ

in which r is assumed to be the exact solution of the stress, and r̂
the FEM solution. Then, the error norm of the entire region is
approximated as

kek2
total �

XM

m¼1

kek2
m; ð3Þ

where M is the number of elements in the whole domain. As we
cannot obtain the exact solution rarely, the error norm is approxi-
mated by substituting ~r instead of the exact solution r, where ~r
is chosen to be closer to the exact solution than the FEM solution
r̂. In practice, ~r is determined using the one-order-higher shape
function rather than using r̂ (see SubSection 2.2 for details). Thus,
we have

kek2 ¼
Z

Xe
ð~r� r̂ÞTð~r� r̂ÞdX: ð4Þ

The relative error norm of the entire region of the analysis mod-
el is defined as

g ¼ kektotal

kEktotal
; ð5Þ

where

kEk2
total ¼

XM

m¼1

kEk2
m ¼

XM

m¼1

Z
Xe

r̂Tr̂dX: ð6Þ

We take g as an acceptance criterion for the re-meshing. If g is
larger than a suitable value for the maximum permissible relative
error �g, the re-meshing is performed, where the error of the entire
region �gkEktotal is distributed uniformly in all the elements of the
region to be solved. Thus, the maximum permissible relative error
of each element �emax is given as

�emax ¼ �g
kEktotalffiffiffiffiffi

M
p : ð7Þ

Since the error norm of each element converges with the order
of the degree of the shape function, a new element size hnew could
be defined as

hnew ¼ hm

n1=p
m

; ð8Þ

where hm is the current element size,p the degree of the shape func-
tion, and

nm ¼
kekm

�emax
: ð9Þ

The bounds of hnew are generally determined as

hmin
6 hnew

6 hmax
; ð10Þ

where hmax and hmin are the upper and lower bounds for the element
size, respectively.

2.2. Zienkiewicz–Zhu’s method [19,20]

As is well known, r̂ is represented as

r̂ ¼ DBu; ð11Þ

where u is the nodal displacement vector, D the stress–strain ma-
trix, and B the strain–node displacement matrix. On the other hand,
~r is determined using the one-order-higher shape function rather
than using r̂ as

~r ¼ N�r; ð12Þ

where �r is a variable and N the shape function of the FEM.
If �r is determined by minimizing the error norm (4), a regular

linear systemZ
X

NTNdX
� �

�r ¼
Z

X
NTDBu
� �

dX ð13Þ
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