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a b s t r a c t

Changing the spatial mesh in transient flow computations may negatively affect the pressure on the new
mesh due to the fact that the interpolated or L2-projected velocities usually violate the divergence con-
straint on the new mesh. It is proven that this pressure perturbation scales as k�1 when k denotes the
time step. Hence, this phenomenon becomes increasingly relevant for small time steps. This is even more
important due to the fact that this phenomena occurs independently whether the discrete scheme is inf-
sup stable or not. In order to solve this problem, a divergence free projection should be applied instead of
a simple interpolation or L2-projection of the velocities. For inf–sup stable finite elements, a recent pub-
lished analysis shows how such a projection should be performed. For non inf-sup stable finite element
pairs with stabilization techniques, as for instance equal-order elements, such an analysis is still missing.
In this work, we tackle this problem, present a possible algorithm and prove bounds of the pressure in the
linear Stokes case. The type of pressure stabilization is very general and includes the interior penalty
method, local projection techniques and others.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive meshing for non-steady problems attract notice as an
efficient solution method for the numerical solution of partial dif-
ferential equations. In flow problems (Stokes, Navier–Stokes,
Oseen), the behavior of the pressure may be negatively affected
when the mesh is changing from one time step to the next one.
This is due to the fact, that the interpolated or L2-projected velocity
of the previous time step onto the new mesh is in general not dis-
crete divergence-free. As shown recently by Besier and Wollner [1],
this pressure perturbation is of order k�1 if k is the time step. More-
over, this effect is independent of the type of spatial discretization
and present in most of the time discretizations. In particular, this
phenomenon occurs for inf-sup stable finite elements as well as
for non inf-sup stable finite elements. A remedy of such spurious
pressure behavior is a ‘divergence-free’ projection of the old veloc-
ities onto the new mesh. For inf-sup stable elements it was proven
in [1] that this scheme avoids the pressure peaks. For equal-order
finite elements such a result is still unknown.

In this work, we focus on the ‘divergence-free’ projection of sta-
bilized finite element schemes. This is reasonable because of the
following two reasons: (i) many finite element methods (first of

all the attractive equal-order schemes) are not inf-sup stable, and
(ii) even stable Stokes elements are not stable for the ‘diver-
gence-free’ projections of Darcy systems, see Mardal et al. [2].
We show that the algorithm needs additional terms and we prove
stability of the pressure independent of the time step k. These re-
sults apply to several types of stabilized schemes, e.g. to Brezzi–
Pitkaränta [3], local projection (LPS) [4], and interior penalty meth-
ods (IP) [5].

1.1. Notations

Let X � Rd; d 2 f2;3g, be a bounded domain with polyhedral
boundary. For the analysis we will later on assume X to be convex.
I ¼ ð0; TÞ is a time interval. By ð�; �Þ and k � k we denote the L2ðXÞ
scalar product and norm, respectively. L2

0ðXÞ is the subspace of
L2ðXÞ functions with zero integral mean value. Vector-valued
quantities are printed in bold.

1.2. Navier–Stokes equations

We consider the non-steady Navier–Stokes equations in dimen-
sionless form: find a velocity field v : I �X! Rd and a pressure
field p : I �X! R such that

@tv þ ðv � rÞv � mDv þrp ¼ f in X; ð1Þ
divv ¼ 0 in X; ð2Þ
v ¼ 0 on @X; ð3Þ
vjt¼0 ¼ v0 in X; ð4Þ
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where m > 0 denotes a positive constant, f : I �X! Rd and
v0 : X! Rd are given functions. For ease of presentation, we restrict
ourselves to homogeneous Dirichlet boundary conditions.

1.3. Backward Euler scheme in time

For the numerical computation of solutions we have to discret-
ize in time and space. For simplicity, we will use the first order
backward Euler scheme in time.

We consider m equidistant time steps of length k :¼ T=m,
0 ¼ t0 < t1 < . . . < tm ¼ T , with ti ¼ ik. In order to formulate the
backward Euler scheme with vðiÞ � vðtiÞ and pðiÞ � pðtiÞ in varia-
tional formulation we introduce the variational spaces
V :¼ H1

0ðXÞ
d and Q :¼ L2

0ðXÞ. We multiply the Eqs. (1) and (2) by
test functions w 2 V and v 2 Q , respectively, and integrate certain
terms by parts. This leads to the semi-discrete variational formula-
tion: Find the pair ðvðiÞ; pðiÞÞ 2 X :¼ V � Q such that for all w 2 V and
all v 2 Q it holds

1
k
ðvðiÞ;wÞ þ ððvðiÞ � rÞvðiÞ;wÞ þ ðmrvðiÞ;rwÞ � ðpðiÞ;divwÞ

¼ 1
k
ðvði�1Þ;wÞ þ ðfðtiÞ;wÞ ð5Þ

ðdivvi;vÞ ¼ 0: ð6Þ

1.4. Discussion of the underlying problem

For the numerical solution of the variational problem stated
above, the infinite dimensional space X has to be replaced by a fi-
nite dimensional space XH . Here, H denotes the mesh size corre-
sponding to a mesh T H . For conforming finite elements it holds
XH � X. The exact requirements are stated below. Let
ðvðiÞH ; p

ðiÞ
H Þ 2 XH be the solution of the discrete analogon of (5), (6).

After changing the mesh to another one, denoted by T h, by a partial
or global mesh refinement of T H , let vðiÞh be the L2-projected veloc-
ity, i.e.

ðvðiÞh ;wÞ ¼ ðv
ðiÞ
H ;wÞ 8w 2 Vh:

This projected velocity is needed in the right hand side to compute
the discrete solution ðvðiþ1Þ

h ;pðiþ1Þ
h Þ2 Xh of the next time step. The

problem is that if Vh å VH (which is the case, e.g., after mesh refine-
ment) the L2-projected velocity is not divergence free with respect
to the new test functions, i.e.

ðdivvðiÞh ;vÞ – 0

for certain v 2 Qh. In [1] it was shown that as a consequence, the
new pressure pðiþ1Þ

h becomes unbounded for vanishing time steps:

kpðiþ1Þ
h kP

C
k

with a positive constant C > 0. To cure this pressure perturbations,
divergence-free projections are proposed in [1] to define vðiÞh instead
of L2-projection or interpolation. There this approach is analyzed for
inf-sup stable finite element pairs Vh � Qh . However, for not inf-sup
stable finite element pairs, as e.g. equal-order elements, the situa-
tion is not clear yet. The reason is the additional stabilization terms
arising in the discrete divergence equation. In this work, we will
close this gap and show theoretically and by means of numerical
examples how to proceed in this case.

1.5. Structure of the work

The material in this work is structured as follows. In the next
section we define the discrete finite element spaces and introduce

a general form of stabilization techniques to treat the absence of a
discrete inf-sup condition. We formulate certain conditions for the
stabilization which are needed later in the analysis. Several types
of stabilization techniques are covered by these assumptions. In
Section 3, the divergence free projection is formulated and several
bounds are derived. These are needed in the subsequent sections.
For this projection, stabilization techniques may be needed as well.
In Section 4, we show that the resulting discrete system delivers in
the case of the Stokes system bounded pressures. Numerical exam-
ples in Section 5 illustrate the behavior of the resulting algorithm.

2. Finite element approximation in space

For discretization in space we use finite elements. Let T h be a
shape-regular, admissible decomposition of X into either triangles
or quadrilaterals for d ¼ 2 or either simplices or hexahedra for
d ¼ 3. The outer diameter of a cell K 2 T h will be denoted by hK

and the maximal and minimal mesh sizes are defined as
hmax :¼maxfhK : K 2 T hg and hmin :¼minfhK : K 2 T hg, respec-
tively. For a family of quasi-uniform meshes it holds hmax 6 chmin

with a mesh independent constant c. Let bK denote the reference
element, FK : bK ! K an isoparametric transformation to the physi-
cal cell K, and PrðbK Þ the space of all polynomials on bK with total
degree (in the case of simplices) or maximal degree r P 0 in each
coordinate direction (in the case of quadrilaterals/hexahedrons).
We will use the H1-conforming finite element space

Pr :¼ fvh 2 H1ðXÞ : vhjK � FK 2 PrðbK Þ 8K 2 T hg:

The finite element spaces are Vh :¼ ðPrÞd \ V for the velocities, and
Qh :¼ Ps \ Q for the pressure with 1 6 s 6 r. The set of cell edges
(faces in 3D) is denoted by Eh.

2.1. Stabilized variational formulation

It is well-known that for equal-order elements, s ¼ r, the Galer-
kin formulation of the Navier–Stokes system is not stable, i.e. the
existence of a unique discrete pressure is not ensured. In this case,
stabilization terms have to be added in the discrete formulation.
There are many possibilities of such stabilization terms. Every
method has its particular advantages and disadvantages. Instead
of limiting to one particular technique, we will treat stabilization
techniques in general. The corresponding additional semi-linear
form will be denoted by Shðv; p; w;vÞ. Together with the semi-lin-
ear form of the Galerkin part with skew-symmetric convective part

Aðw; v; p; w;vÞ : ¼ 1
k
ðv;wÞ þ 1

2
ððw � rÞv;wÞ � ðv; ðw � rÞwÞð Þ

þ ðmrv;rwÞ � ðp;divwÞ þ ðdivv;vÞ

and the stabilized semi-linear form

Ahðv; v; p; w;vÞ :¼ Aðv; v; p; w;vÞ þ Shðv; v;p; w;vÞ

one backward Euler step reads

AhðvðiÞh ; vðiÞh ;p
ðiÞ
h ; w;vÞ ¼ 1

k
ðvði�1Þ

h ;wÞ þ ðfðtiÞ;wÞ 8ðw;vÞ 2 Xh;

where vði�1Þ
h 2 Vh is the discrete velocity of the previous time step.

Note, that we allow for Sh � 0 in the case of inf-sup stable pairs
Vh � Qh and without convection stabilization.

2.2. Considered methods of stabilization

As mentioned earlier, we allow for several types of methods.
However, for the analysis we need certain properties of Shð�; �Þ.
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