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a b s t r a c t

A numerical algorithm, used to obtain a solution for a peri-implant osseointegration model is con-
structed. The model is formulated in terms of a system of three nonlinear coupled time-dependent advec-
tion–diffusion–reaction equations, which are defined within the irregular two dimensional physical
domain, which evolves in time. The embedded boundary method and the level set function, which is
approximated on the fixed regular rectangular grid, are used to track the changes of the irregular geom-
etry of the physical domain. The method of lines is applied to separate the discretizations in time and in
space. The advection, diffusion and reaction terms are discretized separately by means of the cell-cen-
tered finite volume method. The exact solution of the Riemann problem for the nonstrictly hyperbolic
system without genuine nonlinearity, is obtained. An approach for the determination of the gradients
of the unknown variables on the edges of the irregular control volumes is proposed. The explicit second
order trapezoidal rule is used for the time integration, since it allows to maintain positivity of the solu-
tion, which is critical for the considered problem. Some results of the numerical simulations are pre-
sented. Contact and distance osteogenesis are predicted for micro-rough and smooth implants.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bone regeneration is an important biological process in the
osseointegration of implants that are placed into bone tissue. The
process of bone regeneration can be summarized roughly in the
following way. Right after the placement of the implant into the
bone, a blood clot forms within the wound site between the the
implant and bone. Blood platelets attach to the implant surface
and start releasing cytokines and growth factors. Osteogenic cells,
recruited from the old bone surface, migrate towards the implant
surface and differentiate into osteoblasts. Osteoblasts attach to a
solid surface (the implant surface or the old bone surface) and re-
lease new bone matrix though a direct apposition on a pre-existing
surface. Therefore, the concept of a newly formed bone front or
bone-forming surface is used. The last phase of bone regeneration
– remodeling of woven bone into mature bone – is not considered
in the present model, although other works have widely analyzed
this phase (see for example [1]). The aim of the mathematical mod-
el is to describe how changes of the environment within the peri-

implant site, which are represented in the model by the initial and
boundary conditions and by various sets of parameter values, influ-
ence the path of new bone formation.

In the present paper, a numerical approach for the solution of
the mathematical model, which is constructed by Prokharau
et al. [2] to simulate early stages of bone healing around endos-
seous implants, is described.

The model consists of a system of time-dependent advection–
diffusion–reaction equations defined within the changing in time
domain. The equations model migration of osteogenic cells from
the old bone surface to the implant surface, cell differentiation
and proliferation. These processes are assumed to be regulated
by growth factors. Diffusion, decay and release of growth factors
by osteogenic cells are also taken into account. The unknowns in
the model are the densities of immature and mature osteogenic
cells and the concentration of growth factors. New bone is formed
through apposition on a pre-existing surface [3]. The advance of
the ossification front, which was observed in experiments by Bergl-
undh et al. [4], Abrahamsson et al. [5] and Meyer [6] is modeled by
the movement of the boundary of the physical domain.

A robust method is constructed, which allows to get a numeri-
cal solution in case, when the physical domain is defined in 2D axi-
symmetric coordinates. First, an appropriate discretization in
physical space, maturation space and time should be chosen, such
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that a stable nonnegative solution of the nonlinear advection–
diffusion–reaction equations will be obtained. The movement of
the domain boundary, determined from the internal solution, is
tracked with use of the level set method. The embedded boundary
method and some auxiliary interpolation techniques are elabo-
rated in order to adapt the finite volume discretization, which is
in general defined on the structured rectangular grid, to the evolv-
ing irregular physical domain.

The present approach is developed for the solution of the con-
sidered mathematical model for peri-implant osseointegration.
Due to specific features of the model and some requirements on
the numerical solution, the current numerical method possesses
some characteristics, which distinguish it from the existing numer-
ical approaches for various problems in the field of biomechanics.
The set of internal governing equations of the present model forms
the nonlinearly coupled system of advection–diffusion–reaction
type, which is a common type of the systems constructed in the
classical models for bone regeneration [7,8]. An extended review
of modeling approaches in the field of bone regeneration is pre-
sented in Geris et al. [9]. The Finite Volume Method (FVM) is usu-
ally used to get a solution for such problems. However, the classical
models for bone regeneration are not of the moving boundary type.
Hence, classically the governing equations are solved within fixed
domains. For example, Amor et al. [7] employ a custom FVM on a
fixed rectangular structured grid. In the present moving boundary
model, we consider an irregular and time-evolving domain, within
which the numerical solution is obtained. Therefore, an adaptation
of the custom FVM for an unstructured grid containing non-rectan-
gular control volumes near the domain boundary is presented in
the current work, which distinguishes it from the numerical algo-
rithm employed by Amor et al. [7]. Moving boundary problems are
also considered, for example, in the models for wound healing [10]
and tumor growth [11]. Javierre et al. [10] apply the level set meth-
od to track the evolution of the wound domain and the Finite Ele-
ment Method (FEM) with linear elements to solve the internal
diffusion-reaction equations formulated for the wound healing
model. The finite element grid is updated in time in a similar
way as it is done in our approach. Due to the presence of strongly
hyperbolic terms in the governing equations, we use the finite vol-
ume method (FVM), which is more effective than FEM, where the
solution is approximated with continuous functions. The FVM also
makes it easier to meet a positivity requirement, which is essential
for the current problem (see Section 3.1). The level set method is
also used in Hogea et al. [11] for the simulation of tumor growth.
The authors use the Finite Difference Method (FDM) to discretize
the governing model equations within a fixed domain, which con-
tains a time-dependent ‘inner region’ occupied by the tumor mass.
Hence the equations are discretized on a structured uniform grid,
which is not applicable for our model.

Therefore, in Section 2, a short description of the model for peri-
implant osseointegration is given. The numerical algorithm, devel-
oped for the two dimensional physical domain is described in Sec-
tion 3. The importance of positivity of the numerical solution is
outlined in Section 3.1. In Section 3.2 the construction of the com-
putational mesh within the irregular physical domain is presented.
The level set function is used to track the temporal changes of the
domain. The level set equation and the solution method are pre-
sented in Section 3.3. The equations for averaged quantities, de-
rived from the initial governing equations, are constructed in
Section 3.4. The discretization of the advection–diffusion terms is
considered in Section 3.4.1 The approximation of the the reaction
terms and the boundary conditions, and the time integration of
the discretized ordinary differential equations are discussed in Sec-
tions 3.4.2 and 3.5, respectively. In Section 4, some results of the
two dimensional numerical simulations are presented. Final con-
clusions are drawn in Section 5.

2. Mathematical model

The model for bone regeneration, constructed in Prokharau
et al. [2], consists of three partial differential equations (PDEs), de-
fined for the densities of immature and mature osteogenic cells,
denoted as ci and cm, and for the concentration of growth factors
g. The peri-implant interface X is divided into two subdomains
Xs and Xb, which are occupied by soft connective tissue (fibrin net-
work of blood clot) and new bone respectively. Osteogenic cells
and growth factors are found within the soft tissue region. The
boundary between subdomains Xs and Xb is the bone-forming sur-
face. This interface moves in time and is denoted as CðtÞ. At time
t ¼ 0, the whole peri-implant region is filled with soft tissue, and
the bone-forming surface Cð0Þ is defined as the external boundary
of the whole peri-implant region X, which consists of the implant
surface @Xi and the old bone surface @Xb, i.e., Cð0Þ ¼ @Xi [ @Xb (see
Fig. 1). New bone forms by apposition on the rigid surface, which is
represented by surface CðtÞ. Hence, the interface CðtÞ moves, so
that subdomain Xb grows, and region Xs shrinks.

The approximate 2D geometry of the physical domain X shown
in Fig. 1 corresponds to the cross-section of the 2D axisymmetric
peri-implant region, which is depicted in Fig. 2.

Immature osteogenic cells within the soft tissue region differen-
tiate into mature cells. Cell differentiation is introduced by means
of maturation level (or differentiation level) a, which is considered
as an additional dimension of the problem domain, and it takes
values from 0 to 1. Fully non-differentiated cells are related to
the differentiation level a ¼ 0. If an immature osteogenic cell
reaches differentiation level a ¼ 1, it becomes a mature osteogenic
cell.

The evolution of the unknown variables is determined by the
following PDEs
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where ctot ¼
R 1

0 cidaþ cm is the total density of osteogenic cells per
unit of volume, and ci is the density of immature cells per unit of

Fig. 1. Sketch of the problem domain X. The old bone and implant surfaces are
denoted by @Xb and @Xi respectively. Subdomains Xb and Xs correspond to regions
within the healing site, filled with newly formed bone and soft tissue, respectively.
They are separated by the bone-forming surface, denoted by CðtÞ. At t ¼ 0, soft
tissue occupies the whole peri-implant space Xs ¼ X, and the bone-forming surface
is defined as the external boundary of the whole peri-implant region X, which
consists of the implant interface and the old bone surface, i.e., Cð0Þ ¼ @Xi [ @Xb .
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