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a b s t r a c t

This paper describes a finite volume method for simulating transport processes governed by convection–
diffusion type equations. The formulation is based on a cell-centred, unstructured grid. With an edge-
based data structure, discretisation is independent of control volume (or cell) shape. By using a surface
vector decomposition at the midpoint of the interface between cells, along with a deferred-correction
approach, any cross-diffusion due to grid skewness can be readily accounted for when discretising the
diffusive flux. For modelling fluid flow processes, a collocated arrangement of variables is employed so
that a single coefficient matrix applies for the momentum equations of each velocity component. To avoid
‘checkerboard oscillation’ (arising from pressure–velocity decoupling) occurring under the collocated
variable arrangement when a pressure-based solution algorithm is employed, a novel pseudo-flux inter-
polation method is proposed for unstructured grids, ensuring that the solution is both under-relaxation
factor and time-step (for transient calculation) independent. The methodology can be formulated within
a framework whereby either a coupled or a decoupled solution algorithm can be employed. The features
and advantages of the method are demonstrated by solution of the Navier–Stokes equations for two
benchmark flow problems.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

A wide range of transport processes in diverse fields can be
mathematically described by a generic convection–diffusion equa-
tion that requires numerical solution in all but the simplest cases. In
many computational scenarios, the solution domain can be very
complex. Thus the ability to efficiently handle complex geometry
can be a major consideration in developing suitable numerical sim-
ulation methods. In this regard, finite element methods (FEMs) [1]
are often the preferred option. However, to ensure numerical con-
vergence and solution accuracy, there are a range of restrictions
on FEM grid generation, such as using a single element shape (for
example, either triangular or a quadrilateral for two-dimensional
cases) with conditions placed on the angles within an element
[2]. Considerable effort has been devoted to developing FEM mesh
generation algorithms that meet these requirements. However, in
some modelling situations, such as flow problems involving free
surfaces, an initial smooth mesh may be severely distorted during
the solution process. Therefore, numerical methods based on
unstructured meshes, free of any shape or angle restrictions, are
highly desirable. In this regard, the physically meaningful finite vol-

ume methods (FVMs) [3], based on the conservation of mass,
momentum and energy over an arbitrarily shaped cell (or control
volume), provide an attractive alternative to FEMs. Depending on
where dependent variables are stored, how the control volume
(over which the conservation laws are applied) is defined, what
kind of data structure is used for convective–diffusive flux discret-
isation, and what kind of solution strategy is implemented, a variety
of FVMs with different features have been developed.

In a vertex-centred formulation [4–9], dependent variables are
stored (and solved for) at each vertex, and a control volume for
the vertex is constructed using the ‘median dual’ of the cell grid
associated with the vertex, as shown in Fig. 1. Depending on the
data structure used, there are two different ways of discretising
the convective–diffusive fluxes across the control volume faces.
With an element-based structure [4–6], the local variation of a
dependent variable inside a control volume is described by a piece-
wise polynomial function. This formulation is similar to the FEM
approach where the solution within each element is described by
local ‘shape functions’. To make a FVM free of shape and internal
angle restrictions, and to allow hybrid meshes to be used in the for-
mulation, any use of shape functions should be avoided, meaning
that the data structure used should be edge-based [7]. Certainly
the use of such a data structure within a vertex-centred formulation
is computationally more efficient in terms of CPU time and memory
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usage [8], although there are challenges: the control volumes con-
structed around the vertices are usually larger than the cells, while
often flux evaluation for each edge is simplified using an approach
based on the normal vector to the edge corresponding to the cen-
troid dual. As a result, the local truncation error is usually larger
[9] than that for a cell-centred formulation [11] where the cells
themselves, formed by the grid-generation process, are chosen as
the control volumes and dependent variables are solved for (and
stored) at the cell’s geometric centre. In some situations, there is
the additional drawback that a vertex can become a geometrical
singularity, where mathematically the values of some field vari-
ables are not uniquely defined.

With a cell-centred formulation [10–14], geometrical singulari-
ties can be avoided, while construction of dual control volumes is
unnecessary. In addition, if the mesh is orthogonal, such an ap-
proach is computationally efficient because low-order finite differ-
ence approximations along the straight line connecting adjacent

Nomenclature

A area
A area vector (or coefficient matrix)
b source term for a scalar equation
b source term vector for a vector equation
B source term vector for a linear system
d distance from a cell centre to a vertex
ds distance from cell centroid to the midpoint of a face
d̂ unit vector along a connecting line
D vector along a connecting line
F flux
F flux vector
n̂ unit vector normal to a surface
H height
I unit tensor
m mass flow rate
max(x,y) maximum value in x and y
min(x,y) minimum value in x and y
N total number of control volumes (or cells) in the solu-

tion domain
NB neighbouring cell centroid
p isotropic pressure
P cell centroid
R residual
Re Reynolds number
r distance vector
S volumetric source term for a scalar equation
S volumetric source term vector for a vector equation
T tangential vector to a face
t̂ unit vector tangential to a surface
t time
U speed
V velocity vector
V velocity component
x, y Cartesian coordinates

Greek symbols
a, c scaling factors
DM mass residual
d difference
U dependent variable
W position-dependent variable
C diffusive coefficient
j blending factor
l fluid viscosity

K convective coefficient
h volume fraction
q fluid density
s stress tensor
X volume
x under-relaxation factor

Subscripts
bd boundary face designator
f-f0 from point f to point f0

f midpoint of a face
f0 intersection point of a connecting line with a face
U dependent variable
i coordinate index
L left-hand side
max maximum value
n normal direction
NB neighbouring cell designator
nd node (or vertex)
P cell designator
R right-hand side
t tangential direction

Superscripts
bd total number of boundary faces for a control volume (or

cell)
0 previous time value
# intermediate value
⁄ previous iteration
c convection
d diffusion
FO first-order upwind differencing scheme
HO higher-order scheme
k cell index
n normal direction
NC total number of neighbouring control volumes (or cells)
nd node or vertex
nf total number of faces bounding a control volume (or

cell)
SO second-order linear interpolation
T transpose operation
V volumetric

vertex or node

cell centroid

connecting line

midpoint

Cell A

Cell B

control volume (cell)

Fig. 1. Schematic representation of an unstructured, hybrid mesh for a 2D
discretisation.
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