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In this paper, we present a consistent spatial formulation for discontinuous Galerkin (DG) methods
applied to solid mechanics problems with finite deformation. This spatial formulation provides a general,
accurate, and efficient DG finite element computational framework for modeling nonlinear solid mechan-
ics problems. To obtain a consistent formulation, we employ the Incomplete Interior Penalty Galerkin
(IIPG) method. Another requirement for achieving a fast convergence rate for Newton’s iterations is
the consistent formulation of material integrators. We show that material integrators that are well devel-
oped and tested in continuous Galerkin (CG) methods can be fully exploited for DG methods by addition-
ally performing stress returning on element interfaces. Finally, for problems with pressure or follower
loading, stiffness contributed from loaded surfaces must also be consistently incorporated. In this work,
we propose the Truesdell objective stress rate for both hypoelastoplastic and hyperelastoplastic prob-
lems. Two formulations based on the co-rotational and multiplicative decomposition-based frameworks
are implemented for hypoelastoplasticity and hyperelastoplasticity, respectively. Two new terminolo-
gies, the so-called standard surface geometry stiffness and the penalty surface geometry stiffness, are
introduced and derived through consistently linearizing the virtual work contributed from interior sur-
face integrals. The performance of our DG formulation has been demonstrated through solving a cantile-
ver beam problem undergoing large rotations, as well as a bipolar void coalescence problem where the
voids grow up to several hundred times of their original volumes. Fast convergence rates for Newton’s
iterations have been achieved in our IIPG implementation.

© 2012 Published by Elsevier B.V.

1. Introduction

It is the objective of this paper to establish a consistent spatial
formulation for discontinuous Galerkin (DG) methods applied to
solid mechanics problems with finite deformation. Several good
DG features such as locking-free for nearly incompressible materi-
als suggest a great potential for DG methods to be used as an alter-
native to CG methods. On the other hand, in general, a full DG
discretization for the entire domain may be expensive. For many
practical applications, the coupled use of CG and DG methods
has CPU advantages through locally employing DG elements. As
shown in [19,45], DG methods provide a natural computational
framework for modeling crack opening and shear band problems.
Obviously, the use of DG elements only in areas near cracks or
shear bands is much more efficient. In such situations, DG methods
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should be formulated in a framework that is consistent with CG
methods. Furthermore, it is important to do this in both co-rota-
tional and multiplicative decomposition-based frameworks for
solving nonlinear solid mechanics problems with finite deforma-
tion. In this paper we develop a consistent spatial formulation for
the IIPG method. Rather than demonstrating some specific advan-
tages of DG over CG, numerical examples in this paper are selected
to evaluate the performance of the IIPG method for solving large
rotation and large deformation problems in terms of accuracy
and convergence of the Newton'’s iteration.

The foundation for modeling finite deformation problems is the
theory of nonlinear continuum mechanics [53,17,32,42]. The dom-
inant finite element frameworks are CG-based. The pioneering CG
nonlinear finite element analysis for nonlinear solid and structure
continua has been developed by Oden in [40]. The work by Hughes
and Pister [24] put forward the consistent linearization concept for
substantially accelerating solutions for nonlinear problems in CG
frameworks. For both hypoelastoplasticity and hyperelastoplastic-
ity, the stress updating schemes and consistent algebraic modulus
systematically obtained from the so-called local material integra-
tors have been developed by [25,36,46,43,47,1,48,49,35] for classic
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J, and pressure-sensitive plasticity models. The importance of
these consistently formulated material integrators is in that com-
plex practical elastoplasticity problems could be solved in tens or
hundreds of loading steps rather than tens of thousands of loading
steps required by the methods using continuous tangent elasto-
plastic modulus. This has motivated many commercial finite ele-
ment codes to develop and implement consistently formulated
material integrators.

Parallel to the development of CG methods, DG methods
[38,14,4,55,2] have been proposed for reducing the errors induced
by the strong implementation of Dirichlet boundary conditions in
CG methods. A number of DG formulations for fluid problems have
been presented in [9,41,7,10]. For elliptic problems, Arnold et al.
[3] proposed a unified theoretical DG framework. For linear elastic-
ity with small deformation, Hansbo and Larson [18], Riviere and
Wheeler [44], Wihler [56], Lew et al. [26], and Liu et al. [28] dem-
onstrated that DG methods are good alternatives to CG methods in
avoiding volume locking issues. DG methods have been extended
to nonlinear problems in the framework of small deformation by
Wells et al. [54,34] for damage mechanics problems, by Liu et al.
[27,29,30] for poromechanics problems, and by Hansbo [19], Liu
et al. [31], and Djoko et al. [12,13] for classic plasticity problems
with small deformation. For nonlinear solid mechanics with finite
deformation, DG methods have been studied by Noels et al. [39]
and Ten Eyck et al. [50,51] for hyperelasticity and by McBride
et al. [33] for finite gradient plasticity problems.

We now address the contributions of this work. First, the total
Lagrange formulation and the updated Lagrange (spatial) formula-
tion are the two finite element frameworks for solving finite defor-
mation problems. These two methods are theoretically equivalent.
For practical applications, however, the spatial formulation is more
popular in many commercial finite element codes. This is because
the field variables obtained from the total Lagrange formulation
are based on the reference configuration and have to be trans-
formed into variables defined in the current configuration for visu-
alization and data analysis purpose. On the other hand, the field
variables, i.e., the Cauchy stress and the true stress, are naturally
computed in the current configuration and can be directly visual-
ized without any transformation. We therefore adopt a spatial
DG formulation. This approach would also greatly facilitate the
coupling between CG and DG methods. Detailed DG spatial formu-
lations and implementations for solid mechanics problems with fi-
nite deformation are little documented in the literature. In this
work, our DG formulation and linearization are performed on the
current configuration through employing the spatial velocity and
the material time derivative techniques.

Second, the co-rotational formulation [40] for hypoelastoplastic
models and potential energy function-based formulation for
hyperelastoplastic models are two major finite element frame-
works for finite deformation problems. For practical applications,
these two frameworks are equally important. The DG methods in
[39,50,51,33] are formulated and tested on only hyperelasticity
or hyperelastoplasticity. The robust implementation of the co-rota-
tional formulation for finite hypoelasticity has been one of the
most challenging topics for computer programming [21,22,52]. In
this work, our DG methods are formulated and evaluated on both
co-rotational and multiplicative decomposition-based frameworks,
which are critical in many practical applications. Third, our DG spa-
tial formulation for finite deformation problems is based on consis-
tently linearizing nonlinear equations, which provides a fast
convergence rate for Newton’s iterations. In [39], the proposed
DG method is symmetric and only for hyperelasticity. As discussed
in [31], a family of DG methods, except for the Incomplete Interior
Penalty Galerkin [11], have difficulties in achieving a consistent
formulation for plasticity problems even with small deformation.
A consistent DG formulation derived in [31] for classical plasticity

problems is based on IIPG method, but only for problems with
small deformation. In this work, we extend IIPG method to finite
elastoplastic problems. Finally, the stiffness contributed from pres-
sure loadings is also considered in our DG formulation, which is
important for achieving fast convergence rates for Newton'’s itera-
tions for modeling pressure vessel problems.

We organize the remaining sections of this paper as follows. In
Section 2, we summarize the fundamentals of nonlinear contin-
uum mechanics. The material time derivatives of a few deforma-
tion-related variables are summarized in this section for
facilitating the linearization of our DG formulation. Mathematical
statements for modeling finite deformation problems are defined
in Section 3. We develop the spatial IIPG formulation in Section 4.
The IIPG nonlinear equations are linearized in Section 5. Section 6
addresses the importance of establishing local material integrators
for achieving consistent DG formulations. The spatial DG imple-
mentation and nonlinear solution procedures are discussed in Sec-
tion 7. In Section 8, we present numerical examples to demonstrate
the performance of our proposed IIPG method. Conclusions are
summarized in Section 9.

2. Fundamentals of nonlinear continuum mechanics

In this section, referring to [32,49], we describe some key vari-
ables in nonlinear continuum mechanics. These include the defor-
mation gradient, polar decomposition of the deformation gradient,
and pairs of stress and strain measurements. More specifically, we
summarize the rate change forms of the deformation gradient,
infinitesimal volume, and infinitesimal surface area, which will
greatly facilitate our linearization of the virtual work in DG frame-
works performed in later sections. Objective stress rates are also
summarized in this section.

2.1. Strain and stress measurements

Let By  R? be the reference configuration and let B, C R® be the
current deformed configuration. As shown in Fig. 1, a one-to-one
mapping ¢(X,t) maps a particle X € By into x € B;:

x=¢(X,t). (1)
The material velocity V and spatial velocity » of the motion ¢ are de-
fined as follows:

vix.p =200

where ¢! is the inverse of the mapping function ¢. The deforma-

tion gradient F is defined as the partial derivative of the mapping

function ¢ with respective to the reference coordinates as follows:
99X, 1)

E(X,t) =—=.

X.0) oX

The deformation gradient F can be multiplicatively decomposed

into a rotational tensor R(X,t) and a stretch tensor U(X,t) as

follows:

F(X,t) = RXX,0)U(X, t), (3)

v(x,t) = V(X,t) 0 ¢71(X, 1), 2)

where U(X, t) is the right stretch tensor. The above equation is the
polar decomposition of the deformation gradient and the rotational
tensor R(X, t) plays a key role in establishing co-rotational finite ele-
ment frameworks for hypoelastoplasticity. The right Cauchy-Green
tensor C and left Cauchy-Green tensor b are defined in terms of the
deformation gradient F as follows:

C(X,t) =F'F; b(x,t)=FF",

where the superscript T indicates the transpose operation of
tensors. Besides of the right Cauchy-Green and left Cauchy-Green
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