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a b s t r a c t

In this paper, we combine the recent findings in robust topology optimization formulations and Helm-
holtz partial differential equation based density filtering to improve the topological design of electrome-
chanical actuators. For the electromechanical analysis, we adopt a monolithic formulation to model the
coupled electrostatic and mechanical equations. For filtering, we extend the Helmholtz-based projection
filter with Dirichlet boundary conditions to ensure appropriate design boundary conditions. For the opti-
mization, we use the method of moving asymptotes, where the sensitivity is obtained from the adjoint
approach.

Our study shows that the robust filter approach produces topology optimized actuators with minimal
length control and crisp structural boundaries. In particular, the minimal length control of both structural
features and gap widths avoids common modeling artifacts in topology optimization, i.e. one-element
wide structural parts or gaps. It thus leads to physically realizable designs that are robust against man-
ufacturing imprecision such as over- and under-etching.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Design of multiphysics systems has become increasingly impor-
tant for a variety of engineering applications. It is challenging to
design such systems through engineer’s intuition due to complex
interactions between physics. Since its early inception [1,2], topol-
ogy optimization has been applied to a variety of multi-physics
systems, particularly MEMS applications [3–10]. This paper pre-
sents a robust formulation for topology optimization of nonlinear,
coupled electromechanical systems actuated by Coulomb’s (elec-
trostatic) forces and is an extension and improvement of the work
presented in [10]. The added robust formulation leads to optimized
structures with clear black/white (almost no gray) boundaries and
with minimal length scale control for both solid and void features.
The minimal length scale control improves both mechanical and
electrical analysis for topology optimization so that one-node
hinges in electrodes or one-element gaps between electrodes that
otherwise commonly exist in optimized designs are avoided.

Electrostatics is a simple case of electromagnetism where an
electric field is considered as quasistatic due to stationary electric
charges [11]. Most of the widely used MEMS devices use the elec-
trostatic phenomenon for actuation, such as comb-drive actuators

and sensors consisting of integrated capacitors [12,13]. In a quasi-
static electric field, a structure will be subjected to electrostatic
force due to induced charges on structural surfaces. This electro-
static force in turn leads to structural deformation. Because the
deformation of the structure influences the electric field and the
resulting electrostatic force, the coupling between the electric field
and the structural displacement must be considered simulta-
neously [6,8]. In this paper, our analysis is based on a monolithic
formulation of the coupled electromechanical analysis [10], rather
than typical staggered analyses for coupled problems. The minimal
length of both solids and gaps in optimized designs is obtained by
solving three sets of such coupled electric and elastic equations
with the material density filtered by the Helmholtz partial differ-
ential equation based filter. Our study finds that such obtained
minimal lengths in optimized designs agree remarkably well with
minimal length predicted through the numerical approach [14] or
an analytical formula (derived in the Appendix).

The remainder of this paper is organized as follows. Section 2
reviews the monolithic formulation of electromechanical analysis.
Section 3 describes the robust formulation of topology optimiza-
tion under coupled electromechanical governing partial differen-
tial equations (PDEs). Section 4 presents how Helmholtz PDE
filter under Dirichlet boundary conditions can be implemented.
Section 4 details the numerical results on the optimization of an
electrostatic displacement inverter and a gripper. The paper is con-
cluded in Section 5.
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2. Monolithic formulation of electro-mechanical equations in
the undeformed domain

This paper adopts a monolithic approach for coupled electrome-
chanical analysis first suggested in Ref. [10]. For the sake of self-
containedness, we briefly outline this approach in the following.
For details, see [10]. This approach is amenable to topology optimi-
zation by avoiding many obstacles in the usual staggering analysis
approach to coupled problems. More specifically,

� It allows unified equations for modeling both semi-conductors
(e.g. silicon) and insulators (e.g. air), thus avoiding alternating
physics as in the staggering analysis approach. It uses SIMP
material interpolation functions for three material properties
in the unified domain: Young’s modulus C in the linear elasticity
equation, generalized permittivity ~e in the electric Poisson
equation, and the permittivity � for the electrostatic force
calculations.
� The electrostatic forces are calculated by volume integration

instead of usual surface integration of Maxwell’s stress tensor
due to the absence of explicit representation of structural
boundary in topology optimization.
� Governing equations are transformed from the deformed

domain to the undeformed domain using the deformation ten-
sor so that no re-meshing or mesh morphing is required in the
optimization process.

Using the generalized permittivity ~eðxÞ, we can set up the electric
equation as,

rx � ð~eðxÞrxpÞ ¼ 0 intXðuÞ; ð1Þ

where tXðuÞ represents the deformed domain and p is the electric
potential. The generalized permittivity is so chosen that it can mod-
el both semi-conductor and insulator simultaneously (cf. [10]). For
semi-conductors, a constant potential exists on all surfaces. The
particular form of the permittivity interpolation shall be discussed
later.

The linear elasticity equation including prestress from the Max-
well’s stress tensor is

rx � T þrx � TE ¼ 0 in tXðuÞ
T ¼ CS
S ¼ 1

2 ðr
T
x uþrxuÞ

8><>: ; ð2Þ

where TE is the Maxwell’s stress tensor, T is the stress, S is the
strain, u is displacement, and the deformation-independent consti-
tutive matrix is denoted as C. Note that for the stress, we assume
geometrically linear analysis, i.e. we neglect changes of surface
areas, volumes and mass densities between deformed and unde-
formed structural domains [15]. Hence, we have

rx � T ¼ rX � T; ð3Þ

where x and X represent space coordinates after and before the
deformation, respectively. The Maxwell’s stress tensor is calculated
as follows

TE ¼ eðxÞ EE � E � E
2

I
� �

; ð4Þ

with the electric field E ¼ �rxp.
Combining (1) and (2), we obtain the following weak form of

the electric and elastic equations in the deformed domain: find p
and u such thatZ

tX
ðrxdpÞT � ~eðxÞrxpð ÞdX ¼ 0; ð5Þ

Z
0X

dST � T dX ¼ �
Z

tX
dSðu; duÞT � TE dX; ð6Þ

where dp is the test function for the electric potential p; dS is the test
function (virtual strain) for strain S with dSðuÞ ¼ 1

2 ðrXduT þrXduÞ
and dSðu; duÞ ¼ 1

2 ðrxduT þrxduÞ. Note that the linear structural po-
tential energy is represented directly in the undeformed domain, as
assumed earlier. We can transform the other integral forms from
the deformed domain into the undeformed domain via the
deformation tensor F ¼ @x

@X. Using rxu ¼ F�TrXu;rxp ¼ F�TrXp;R
tXðÞdX ¼

R
0XðÞkFkdX and dSðu; duÞ ¼ 1

2 ðF
�TrXduÞT þ F�TrXdu

� �
,

we thus have the weak form in the undeformed domain, find
p 2 P and u 2 U such thatZ

0X
ðrX ~pÞTðF�1eeðXÞF�TÞrXpjjFjjdX ¼ 0; 8~p 2 P0; ð7Þ

Z
0X

~ST � T dXþ
Z

0X

~Sðu; ~uÞT � TEjjFjjdX ¼ 0; 8~u 2 U0; ð8Þ

where

P ¼ fpjp 2 H1ðXÞ;p ¼ �p on Cpg;

P0 ¼ f~pj~p 2 H1ðXÞ; ~p ¼ 0 on Cpg;

U ¼ fuju 2 H1ðXÞ;u ¼ �u on Cug;

U0 ¼ f~uj~u 2 H1ðXÞ; ~u ¼ 0 on Cug;

The above weak form is solved by the finite element method in
this paper. Upon discretization, it leads to residual equations
RðuÞ ¼ 0 corresponding to the non-linear finite element imple-
mentation of eqs (7) and (8).

3. Robust topology optimization

In the original work on the monolithic topology optimization
formulation for electrostatic mechanism design [10], it was quite
a challenge to enforce strict length-scales in gap regions. Obvi-
ously, one element wide gap regions with significant jumps in elec-
tric potential do not represent physical reality well. In order to
partially alleviate this problem, Ref. [10] suggested to use the mod-
ified Heaviside projection scheme [16], a scheme that for simple
compliance problems works very well and ensures minimum
length scale control for void regions. For the electromechanical
actuator design problem this scheme did ensure finite gap regions
to a certain extent, however, problems with enforcing strictly so-
lid-void designs resulted in somewhat unsatisfactory modeling of
the electric field in gap regions. Also, the modified Heaviside filter-
ing only controls void length scales, hence it was not able to pre-
vent thin and non-physical hinge regions.

Lately, so-called robust filtering approaches have shown great
promise [17,14] in preventing small details and ensuring finite
length scales for minimum compliance and compliant mechanism
design problems. Apart from ensuring strict control of both solid
and void length scales, numerical experiments indicate that the ro-
bust filtering concept, that entails optimization of three different
design realizations (the blue-print design as well as the under-
and over-etched realizations), yields an intrinsic penalization of
gray regions.

Based on above observations, we find it worthwhile to revisit
the challenging problem of electrostatic compliance mechanism
design and to combine it with the newest findings in robust topol-
ogy optimization approaches to result in a design methodology
that ensures physically meaningful simulations and results.
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