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a b s t r a c t

We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-
based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellu-
lar potential, and the displacement field as independent variables, and extend the common two-field
bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic
coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced
generation of intra-cellular currents. The coupled reaction–diffusion equations of the electrical problem
and the momentum balance of the mechanical problem are recast into their weak forms through a con-
ventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve
the governing equations of excitation–contraction coupling in a fully coupled, implicit sense. We demon-
strate the consistent linearization of the resulting set of non-linear residual equations. To assess the algo-
rithmic performance, we illustrate characteristic features by means of representative three-dimensional
initial-boundary value problems. The proposed algorithm may open new avenues to patient specific ther-
apy design by circumventing stability and convergence issues inherent to conventional staggered solu-
tion schemes.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The past two decades have seen tremendous progress in the
computational modeling of the heart [23,24]. Efficient computa-
tional tools for the assistance of patient specific treatment of car-
diac disorders is of great scientific and socio-economical interest
[3]. We have come to appreciate that these tools can provide access
to regionally varying quantities such as wall strains or stresses,
which are virtually impossible to measure in the beating heart
[30,58]. Although tremendous effort has been devoted to under-
stand the coupled electrical and mechanical response of the heart,
most existing algorithms solve the electrical and mechanical fields
in a decoupled way, typically by using different discretization tech-
niques in time and space for the individual fields [27]. Historically,
the biochemical response has been modeled by biophysicists
[12,21,36], the electrical response by electrical engineers [2,7],
the mechanical response by mechanical engineers [8,20], and the
clinical response by clinicians [5,25]. The lack of cross-talk be-

tween the individual disciplines has hampered the creation of a
unified, robust and stable, fully coupled multiscale-multifield solu-
tion strategy.

The bidomain equations represent a homogenization of the
intracellular and extracellular medium [33,59]. The coupled bido-
main equations of electrophysiology have been traditionally solved
through staggered solution schemes. The solution of the parabolic
and elliptic part of the the bidomain equations via operator split-
ting follows a common recipe: In the first step, the elliptic part is
solved for a constant transmembrane potential /. In the second
step, the parabolic part is solved for a constant external potential
/e [56,61,63]. Apparently, the operator splitting simplifies the cou-
pled nonsymmetric set of equations with symmetric and smaller
subsystems at the expense of computation time and stability
[15,48]. The strong coupling due to steep excitation wavefront
causes significant stability issues and renders the staggered algo-
rithms computationally inefficient and expensive. This fact moti-
vated the intense study of the monodomain equation, which is
obtained through the proportionality assumption between the
conduction tensors of the intra- and extracellular domains of the
bidomain model. This assumption reduces the coupled bidomain
equations to a single parabolic reaction–diffusion equation, which

0045-7825/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2012.07.004

⇑ Corresponding author at: Institut für Mechanik (Bauwesen), Lehrstuhl I,
Universität Stuttgart, Germany.

E-mail address: huesnue.dal@mechbau.uni-stuttgart.de (H. Dal).

Comput. Methods Appl. Mech. Engrg. 253 (2013) 323–336

Contents lists available at SciVerse ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2012.07.004
mailto:huesnue.dal@mechbau.uni-stuttgart.de
http://dx.doi.org/10.1016/j.cma.2012.07.004
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


a priori satisfies the elliptic part of the bidomain model. It should
be mentioned that the simplified monodomain model of electro-
physiology is incapable of modeling the externally applied shock-
induced polarization due to nonproportional conductances be-
tween the intra- and extracellular spaces and typically mispredicts
the velocity of the front depolarization wave [44]. This limits use of
the monodomain model in defibrillation simulations. An alterna-
tive remedy for the solution of the bidomain equations is the
improvement of the solution algorithms. To this end, semi-implicit
integration methods where the local and global field variables are
updated through explicit and semi-implicit methods [26], predic-
tor–corrector type time stepping algorithms [61,63,54] and
three-step operator splitting techniques are employed in order to
improve the stability and accuracy of solution algorithms [62]. Var-
ious preconditioning strategies, e.g. symmetric successive over relax-
ation [41], block Jacobi [14,61], block triangular monodomain [15],
multigrid [40,41,56,48] and multilevel (hybrid) Schwarz methods
have been devised for the linearized set of equations resulting from
operator splitting algorithms [35,49–51]. A hybridomain model,
which is adapted based on a posteriori error estimator to either
bi- or monodomain, is introduced in order to improve the comptu-
tational efficiency of the semi-implicit integration [34].

Various anisotropic continuum based models [22,37] and finite
element formulations [16] are developed for the passive mechani-
cal response of the heart. The three-dimensional structure of the
heart can be constructed from segmented MRI data [43,45] and
the myofiber orientation in the heart can be obtained by aniso-
tropic least square filtering followed by fiber and sheet tracking
techniques applied to the Diffusion Tensor Magnetic Resonance
Imaging data of the excised human heart [46]. Operator splitting
schemes based on monodomain electrophysiology have been pro-
posed for the electromechanical excitation–contraction problem in
[39,47,60,38]. These approaches combine a finite difference meth-
od to integrate the excitation equations, with a Galerkin finite ele-
ment method to solve the equations governing tissue mechanics.

Current state-of-the-art electrophysiological and passive mechan-
ical models enable researchers to explore arrhythmogenesis at the
organ level. In order to enable the use of these models for patient-spe-
cific therapy design, we still lack efficient numerical methods. At this
point, it is noteworthy to say that the above mentioned procedures
do not heal the inherent instability issues associated with both decou-
pled semi-explicit solution strategies and nonconsistent linearization of
the variational formulation. Recently, we have proposed a unified,
unconditionally stable, finite element formulation based on a Galer-
kin-type variational formulation for the monodomain electrophysiol-
ogy [17], bidomain electrophysiology [9] and monodomain based
two-field electromechanics [18]. The unconditional stability and the
quadratic convergence of the formulations results from the fully
implicit backward Euler scheme employed for the integration of the
global and local field variables and the consistent linearization of
the residual terms obtained from the weak form.

In this follow up work, we extend the monolithic schemes pro-
posed for the bidomain electrophysiology [9] and the two-field
electromechanics [18] to three-field excitation contraction cou-
pling [10]. The proposed structure is inherently modular and can
be easily generalized to the three-field electro-chemistry [64],
the four-field photo-electro-chemistry [1], or the four-field che-
mo-electro-mechanics of the heart. Unlike existing discretization
schemes, which are most powerful on regular grids [6], the pro-
posed finite element based discretization can be applied to arbi-
trary geometries with arbitrary initial and boundary conditions.
It is easily applicable to medical-image based patient-specific
geometries [29,42,66]. The resulting algorithm provides an uncon-
ditionally stable and geometrically flexible framework, which
opens possibilities for the analysis of defibrillation phenomena
and their impact on the electromechanical behavior of heart tissue.

We demonstrate the performance of the proposed approach
through a coupled electromechanical analysis of spiral wave initi-
ation in a slice of cardiac tissue and excitation contraction of a
three-dimensional generic biventricular heart model. The compu-
tational cost of the model in comparison to monolithic monodo-
main electromechanics formulation is commented.

This manuscript is organized as follows: In Section 2, we intro-
duce the governing equations of cardiac electromechanics consist-
ing of the bidomain model of electrophysiology and the quasi-
static linear momentum balance. Section 3 is devoted to the deri-
vation of the weak forms of the field equations, their consistent lin-
earization, and their spatio-temporal discretization. Therein, we
apply the finite element method in space and a backward Euler
type finite difference scheme in time. In Section 4, we specify the
constitutive equations for the underlying source and flux terms,
and derive the corresponding consistent algorithmic tangent mod-
uli. Section 5 is concerned with numerical examples demonstrating
the distinctive performance of the proposed approach. We con-
clude the manuscript with closing remarks in Section 6.

2. Governing equations of the cardiac electromechanics

This section introduces the field equations and corresponding
state variables of the coupled boundary value problem of cardiac
electromechanics.

2.1. Geometric mappings and the field variables

A body B is a three-dimensional manifold consisting of material
points P 2 B. The motion of the body is defined by a one-parameter
function of time via bijective mappings

vðP; tÞ ¼ B ! BðP; tÞ 2 R3 � Rþ;

P # x ¼ vtðPÞ ¼ vðP; tÞ:

(
ð1Þ

The point x ¼ vðP; tÞ denotes the configuration of the particle P at
time t 2 Rþ. Let the configuration of the material points at a refer-
ence time t0 be denoted by X ¼ vðP; t0Þ 2 R3 and vtðPÞ ¼ vðP; tÞ de-
note the placement map for a frozen time frame t. Then, the
deformation map ut ¼ vt � v�1

0 ðXÞ with

utðXÞ ¼
B0 ! B 2 R3;

X # x ¼ uðX; tÞ;

(
ð2Þ

maps the reference configuration X 2 B0 of a material point onto the
spatial counterpart x 2 B. The deformation gradient

F : TXB0 ! TxB; F :¼ rXutðXÞ ð3Þ

maps the unit tangent of the reference or the Lagrangean configura-
tion onto its counterpart in the current or the Eulerian configuration.
The gradient operatorsrX ½�� andrx½�� denote the spatial derivative
with respect to the reference X and current x coordinates, respec-
tively. Moreover, the Jacobian J :¼ det F > 0 characterizes the volume
map of infinitesimal reference volume elements onto the associated
spatial volume elements. Furthermore, the reference B0 and the spa-
tial Bmanifolds are locally furnished with the covariant reference G
and current g metric tensors in the neighborhoods N X of X and N x

of x, respectively. These metric tensors are required for the mapping
between the co- and contravariant objects in the Lagrangean and
Eulerian manifolds [31]. In order to impose the quasi-incompressible
nature of the biological tissues, the deformation gradient F is decom-
posed into volumetric Fvol :¼ J1=3 and unimodular �F :¼ J�1=3F parts

F ¼ Fvol
�F: ð4Þ

The ventricular myocardium is represented as a continuum with a
hierarchical architecture consisting of discrete interconnected

324 H. Dal et al. / Comput. Methods Appl. Mech. Engrg. 253 (2013) 323–336



Download English Version:

https://daneshyari.com/en/article/6918446

Download Persian Version:

https://daneshyari.com/article/6918446

Daneshyari.com

https://daneshyari.com/en/article/6918446
https://daneshyari.com/article/6918446
https://daneshyari.com

