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We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic
problems. The smoothing property of the relaxation method, and the approximation property of the
intergrid transfer operators are analyzed. These properties, when used in the framework of classical mul-
tigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical
results are provided for the smoothing property, the approximation property, convergence factor and
iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smooth-
ing steps. For two dimensions, numerical results include the problems with variable coefficients, simple
multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement
levels ¢, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered.
The numerical results are complete up to polynomial order p = 4, and for C° and C”~' smoothness.
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1. Introduction

Isogeometric method (IGM), introduced in 2005 [28], aims to
bridge the gap between finite element method (FEM) and com-
puter aided design (CAD). The main idea of IGM is to directly use
the geometry provided by the CAD system, and following the iso-
parametric approach, to approximate the unknown variables of
differential equation by the same functions which are used in the
CAD system. IGM offers several advantages when compared to
classical FEM. For example, some common geometries arising in
engineering and applied sciences, such as circles or ellipses, are
represented exactly, and complicated geometries are represented
more accurately than traditional polynomial based approaches.
Another noteworthy advantage of IGM over classical FEM is the
higher continuity. It is a difficult and cumbersome (if not impossi-
ble) task to achieve even C' inter-element continuity in FEM,
whereas IGM offers up to C°"™ continuity, where p denotes the
polynomial order and m denotes the knot-multiplicity.

A primary goal of IGM is to be geometrically precise at the
coarsest discretization level. In particular, the description of the
geometry, taken directly from the CAD system, is incorporated ex-
actly at the coarsest mesh level. This eliminates the necessity of
further communication with the CAD system when mesh refine-
ment is carried out. Thereby, the mesh refinement does not modify
the geometry. There are several computational geometry technol-
ogies that could serve as a basis for IGM. However, non-uniform
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rational B-splines (NURBS) are the most widely used and well
established computational technology in CAD, which we shall also
pursue in this work. In last several years IGM has been applied to a
variety of problems, e.g., fluid dynamics, electromagnetics, struc-
tural mechanics, etc. with promising results. For a detailed discus-
sion see early papers on IGM [2,8-11,18,19] and the book [17].
Since the introduction, most of the IGM progress has been focused
on the applications and discretization properties. Nevertheless,
when dealing with large problems, the cost of solving the linear
system of equations arising from the isogeometric discretization
becomes an important issue. Clearly, the discretization matrix A
gets denser with increasing p. Therefore, the cost of a direct solver,
particularly for large problems, becomes prohibitively expensive.
This necessitates the development and use of fast and efficient iter-
ative solvers. It is known that the performance of iterative solvers
depends on the condition number of the matrix A. Let K = max/Amin
(i.e. ratio of largest to smallest eigenvalues) denote the spectral
condition number of A. In Table 1, we present x(A) of the Laplace
operator. We consider a unit square domain and a uniform mesh
of ng x no elements (open knot-spans for IGM) with mesh-size h.
This also serves as a comparison between FEM with Lagrange
basis! and IGM. For a fair comparison, we take C° continuity in
IGM as this results in the same problem size for both the methods.
Though the condition number for both the methods reaches O(h?)
asymptotically, however, for IGM the polynomial order p clearly af-
fects the range of the mesh when asymptotic behavior is reached.
For example, for IGM with p =5, the asymptotic behavior is not

1 Alternatively, the hierarchical basis [37] can also be used for very good condition
numbers, but the inter-element continuity is still C°.
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Table 1
Comparison of x(A).
no p=2 p=>5
FEM IGM FEM IGM
2 14 7 581 11094
4 55 12 2317 12951
8 216 36 9263 13680
16 859 140 37050 13886
32 3434 554 148198 13939
64 13734 2215 592789 13952

reached up to a reasonably refined mesh. On one hand, this is an
advantage as the condition numbers are moderate towards the finer
spectrum of the mesh, but on the other hand, this is a serious disad-
vantage towards the coarser spectrum of the mesh. Note that the
condition number rapidly increases with p, and it can reach ~10°
for p = 10 even for ny = 2. This is also reflected by the bound of
which behaves like O(p*4%), see [24], where d denotes the dimen-
sion of the problem domain.

To the best of authors’ knowledge, so far there are only very few
papers [12,13,16,29] which address the performance of linear alge-
bra solvers. In Ref. [16], the authors study the performance of di-
rect solvers which are clearly not suitable for large problems,
specially in three-dimensions. In Ref. [29], the tearing and inter-
connecting approach of finite element methods is used in the con-
text of isogeometric analysis, and the numerical tests (in absence
of any theoretical study) suggest almost optimal (with a logarith-
mic factor) convergence rates of the proposed isogeometric tearing
and interconnecting method. The only paper which provides rigor-
ous theoretical study, supported by extensive numerical examples,
is by Beirao et al. [12] where the authors discuss the overlapping
Schwarz methods. The same authors have also proposed BDDC pre-
conditioners for isogeometric analysis in [13].

In this paper we address another class of linear algebra solvers
with optimal complexity, namely multigrid methods. During the
last five decades (first paper by Fedorenko in 1961), these methods
have been established as a powerful and efficient tool for solving
linear system of equations arising in a variety of problems
[5,26,38]. The key idea of multigrid goes back to R.P. Fedorenko
in the early 60s [22,23], who developed the first multigrid method
for solving the Poisson equation on a unit square. The first rigorous
convergence proof was provided by Bakhwalov [4]. In early 70s,
the multigrid idea was generalized to variational finite difference
equations and general finite element equations by Astrachancev
[1] and Korneev [30]. However, the huge potential of multigrid
methods was realized due to the works of Brandt [6] and Hack-
busch [25,26]. A few years later, in the early eighties, algebraic
multigrid methods were introduced by Brandt et al. [7], which re-
build the multigrid algorithm based on the information that is
accessible via the system of (linear) algebraic equations only. For
a more recent exposition of multigrid methods in a multilevel
block factorization framework, see also [39].

Our focus in this paper is on multigrid methods for solving the
linear system of equations arising from the isogeometric discreti-
zation of scalar second order elliptic problems in a single patch.
We first prove the condition number estimates of the discrete sys-
tem for the h-refinement, and provide the supporting numerical
results for all levels of smoothness (from C° to C*~'). These results
suggest the expected behavior from the two-(multi-) grid solver.
We then prove both the components of the two-grid solver,
namely the approximation property of the inter-grid transfer oper-
ators, and the smoothing property of the classical Gauss-Seidel
(symmetric as well as non-symmetric) method. Together, these
two components establish the h-independence of the two-grid sol-
ver. For the multi-grid solver, which uses the two-grid solver

recursively, we recall the h-independent convergence estimates
from [26].

Following the terminology of traditional FEM, we will call the
open knot-span as element wherever appropriate. Moreover, as
most of the NURBS based designs in engineering use polynomial
order p =2 and 3, throughout this article we will confine ourselves
up to p = 4. Furthermore, throughout this article we use the nota-
tion f <g (respectively f >~ g) to denote f <cg (respectively
f > cg) where the constant c is independent of the mesh parameter
h and the inequality arguments, but it may depend on the polyno-
mial order p.

The contents of this article are organized as follows. In Section 2
we briefly recall the notations for B-splines and NURBS. The geom-
etry mapping and the function spaces are also introduced there. In
Section 3 we describe the model problem and recall error esti-
mates. Furthermore, the properties of the discrete system and
the norm equivalences are also studied there. In Section 4 we dis-
cuss the two-grid method. The multigrid method is then discussed
in Section 5. Numerical results on four model problems are pre-
sented in Section 6. Finally, some conclusions are drawn in
Section 7.

2. Notations

To keep the article self-contained, we briefly recall the defini-
tions of B-splines and NURBS. For the properties of B-splines and
NURBS, which are related to our problem, the reader is referred
to [17,28]. For a detailed exposition see, e.g., [32,34,36]. Let p be
a non-negative integer denoting the polynomial order, and n be
the number of basis functions (B-splines or NURBS). With
i=1,2,...,n+p+1, denoting the knot index, we assume that
the knot vector 2= {&,&,...,&nps1} IS a sequence of non-
decreasing knots ¢&;. The knot vector is uniform if the knots are
equally spaced, and it is non-uniform when the knots are un-
equally placed. It is also possible for more than one knot to have
the same value, wherein they are called multiple knots. A knot vec-
tor is said to be open if its first and last knot values appear p + 1
times.

The B-spline basis functions, denoted by BY(¢), are defined
recursively as follows:

. 1 if & <é<iy
BO £) — 1 1+ 1a
() {O otherwise (13)
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Cip — Gi ‘fl+p+1 Ein

Note that for non-repeated internal knots the support of a B-spline
basis function of order p is always p + 1 knot spans, and every knot
span is shared by p + 1 B-spline basis functions, see Fig. 1 where we
plot B-spline basis functions for open, uniform knot vector
{0,0,---,&,1,... 2,13 ... 1,1} with order 2 and 8. The basis func-
tions formed from open knot vectors are interpolatory at the ends of
the parameter space interval [£;, &,,p1]). In general, basis functions
of order p have p — m; continuous derivatives across knot ¢;, where
m; is the multiplicity of the value ¢; in the knot vector. When the
multiplicity of an internal knot value is exactly p, the basis is inter-
polatory at that knot. This is an important property of B-spline basis
functions, in particular, from analysis point of view. Moreover, in
IGM the geometry is fixed at the coarsest level of discretization,
and any subsequent refinement (whether h—,p— or r—) does not
change it. For example, if a partition Qj, of (0, 1) is given with the
knot vector &, = {0,0,0,0,1/2,1,1,1, 1}, then the refined partition
Oy, can be obtained from @y, via a regular subdivision of knot vec-
tor &y into E;, where Z; = {0,0,0,0,1/4,1/2,3/4,1,1,1,1}. Fur-
ther refinements are similarly carried out.
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