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a b s t r a c t

We derive in this paper a new local static condensation strategy which allows to reduce significantly the
number of unknowns in algebraic systems arising in discretization of partial differential equations. We
apply it to the discretization of a model linear elliptic diffusion and a model nonlinear parabolic advec-
tion–diffusion–reaction problem by Crouzeix–Raviart nonconforming finite elements. Herein, the
unknowns, originally associated with the mesh faces, can be reduced to new unknowns associated with
the mesh elements. The resulting matrices are sparse, with possibly only four nonzero entries per row in
two space dimensions, positive definite in dependence on the mesh geometry and the diffusion–disper-
sion tensor, but in general nonsymmetric. Our approach consists in introducing new element unknowns,
the identification of suitable local vertex-based subproblems, and the inversion of the corresponding local
matrices. We give sufficient conditions for the well-posedness of the local problems, as well as for the
resulting global one. In addition, we provide a geometrical interpretation which suggests how to influ-
ence the form of the local and global matrices depending on the local mesh and data. We finally present
an abstract generalization allowing for a further reduction of the number of unknowns, typically to one
unknown per a set of mesh elements. We conclude by numerical experiments which show that the con-
dition number of the resulting matrices is quite insensitive to the mesh anisotropies and the diffusion
tensor inhomogeneities.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Zi and Zb be two given matrices and let E be a given right-
hand side vector. We consider in this paper the following problem:
find K;K :¼ ðKi;KbÞt , such that

Zi Zb

0 I

 !
Ki

Kb

 !
¼

E

0

� �
: ð1:1Þ

Here I stands for the identity matrix. Note that it follows from (1.1)
that Kb ¼ 0, so that (1.1) can be equivalently rewritten as: find Ki

such that

ZiKi ¼ E: ð1:2Þ

System (1.1) typically results in the discretization of elliptic or par-
abolic problems by the Crouzeix–Raviart nonconforming finite ele-
ment method of Crouzeix and Raviart [6] or by the mixed finite
element method of Raviart and Thomas [10] and [3], see Sections
3 and 4 for details. Therein, Zi is a sparse (symmetric) positive def-
inite matrix.

The purpose of this paper is to devise a general principle allow-
ing to reduce equivalently system (1.1) to a system

SP ¼ H; ð1:3Þ

with a sparse and easily computable matrix S and much fewer
unknowns P. Let X be a computational domain and T h its simplicial
mesh. We suppose that the unknowns K are associated with the
mesh faces, whereas the new unknowns P are associated with the
mesh elements.

In Section 2, we introduce an abstract and algebraic principle for
reducing (1.1) to (1.3). We introduce an arbitrary matrix N and
augment (1.1) with the relation NK ¼ P. We then identify suitable
local subproblems of the augmented system, invert the corre-
sponding local matrices, obtain local expressions of the unknowns
Ki in terms of the new unknowns P, and finally identify the matrix
S and the right-hand side vector H of (1.3). Under Assumption 2.2
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below, we also prove the well-posedness of (1.3), the equivalence
of (1.3) with (1.1), and characterize the stencil (maximal number
of nonzero entries per each matrix row) of S. This approach gener-
alizes those obtained in the framework of the mixed finite element
method in Younès et al. [19,18], Chavent et al. [4], and [14,17]. In
contrast to [19,4,18], our starting point is purely algebraic, and
no geometrical mesh or discretization information is used. More-
over, different choices of N are possible and a family of reformula-
tions can be obtained.

Enlightening the abstract algebraic approach of Section 2, we
provide in Section 3 its specification for the discretization of a
model linear elliptic diffusion problem by the Crouzeix–Raviart
nonconforming finite element method. We also present its geo-
metric interpretation. Here, the new element values are the values
of the Crouzeix–Raviart approximation in points associated with
the elements (not necessarily inside the elements). We give in Sec-
tion 3 sufficient conditions in terms of the diffusion tensor S and of
the geometry of the mesh T h for Assumption 2.2 to hold. We also
investigate how the properties of the local problems and of the
matrix S can be influenced by the choice of the element points.
In Section 4, we then present similar developments for a model
nonlinear parabolic advection–diffusion–reaction problem discret-
ized by the Crouzeix–Raviart method.

In Section 5, we report results of several numerical experiments.
The matrices S resulting from our approach are in general positive
definite but nonsymmetric. Their condition number is in our numer-
ical examples quite insensitive to the anisotropies of the mesh T h

and inhomogeneities of the tensor S for linear diffusion problems.
We observe CPU gains for both standard direct and iterative solvers
in the range of a factor 1:5 to 3, 30 in particular situations. A conclud-
ing discussion is given in Section 6.

We finish the paper by Appendix A which gives a generalization
of the approach of Section 2, weakens Assumption 2.2, and enables
a further reduction of the number of unknowns.

2. Static condensation from edges to elements

We introduce in this section our basic static condensation prin-
ciple, which enables us to rewrite (1.1) equivalently as (1.3), reduc-
ing the number of unknowns from mesh faces to mesh elements.

2.1. The domain and its mesh

Let X � Rd; d P 2, be a polygonal (polyhedral) domain and let
T h be a matching (containing no hanging nodes) simplicial mesh
of X in the sense of Ciarlet [5]. We denote by Eh the set of all
ðd� 1Þ-dimensional faces of T h. We divide Eh into interior faces
Ei

h and boundary faces Eb
h. For r 2 Eh, let xr stand for the barycenter

of the face r. We next denote by Vh the set of vertices of T h. For a
given vertex V 2 Vh, we shall denote by T V the patch of the ele-
ments of T h which share V, by Eint

V � E
i
h the interior faces of T V ,

and by Eext
V the faces of T V not having V as vertex. We set

EV :¼ Eint
V [ E

ext
V and we also denote by Eb

V the faces of T V which
lie on the boundary @X and not in EV . We refer to Figs. 1–3 for
an illustration in two space dimensions. Let K 2 T h. By EK , we de-
note the set of all faces of K and by Ei

K the set of such faces of EK

which lie in Ei
h. Let V be a vertex of K. We will also employ the nota-

tion EV ;K for the faces of K which have V as vertex. Finally, xK de-
notes the barycenter of K. The symbol jSj stands for the
cardinality (the number of elements) of a set S.

2.2. Augmented problem setting

Let Zi 2 RjE
i
h j�jE

i
h j;Zb 2 RjE

i
h j�jE

b
h j be given matrices. Both have the

number of rows equal to the number of mesh interior faces; the
number of columns of Zi is given by the number of mesh interior

faces, whereas that of Zb by that of mesh boundary faces. Let a
right-hand side vector E 2 RjE

i
h j be also given. We consider the fol-

lowing problem: find K 2 RjEh j;K ¼ fKrgr2Eh
¼ ðKi;KbÞt , such that

(1.1) holds. Herein, we merely suppose that (1.1) is well posed,
i.e., that the system matrix of (1.1) is nonsingular, and that on a
row associated with a face r 2 Ei

h, the only nonzero entries of
ðZi;ZbÞ lie on columns associated with faces c 2 Eh such that r
and c belong to the same simplex.

Let N 2 RjT h j�jEh j. We suppose that on a row of N associated with
an element K 2 T h, the only nonzero entries are on columns asso-
ciated with the faces EK of K; apart from this assumption, the ma-
trix N is arbitrary. This assumption will ensure locality of our
approach and sparsity of the final matrix S. Introduce one new un-
known PK for each mesh element K 2 T h. Let P be the correspond-
ing algebraic vector, P ¼ fPKgK2T h

. Consider now the following
augmented problem: find K 2 RjEh j and P 2 RjT h j such that (1.1)
holds together with

NK ¼ P: ð2:1Þ

This problem is well posed in the sense that there exists a unique
solution ðK; PÞ of (1.1), (2.1). Indeed, (1.1) defines K in a unique
way thanks to its well-posedness. As (2.1) is completely uncoupled
from (1.1), P is simply prescribed by P :¼ NK.

2.3. Structure of the algorithm

In order to present the key idea of our approach as clearly as
possible and to underline its simplicity, we now present the struc-
ture of our algorithm:

Fig. 1. An example of a patch T V around a vertex V in the interior of X.

Fig. 2. An example of a patch T V around a vertex V close to the boundary of X.

Fig. 3. An example of a patch T V around a vertex V on the boundary of X.
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