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a b s t r a c t

This paper presents a modification of the well established strong discontinuity approach to model failure
phenomena in solids by extending it to multiple levels. This is achieved by the resolution of the overall
problem to be solved into a main boundary value problem and identified sub-domains based on the con-
cepts of domain decomposition. The initiation of those sub-domains is based on the detection of failure
onset within finite elements of the main boundary value problem which takes place at the process zone
in front of the propagating cracks. Those sub-domains are subsequently adaptively discretized during
run-time and comprise the so called sub-boundary value problem to be solved simultaneously with
the main boundary value problem. To model failure, only the sub-elements of those sub-boundary value
problems are treated by the strong discontinuity approach which, depending on their state of stress, may
develop strong discontinuities to be understood as jumps in the displacement field to model cracks and
shear bands. Due to its resolution into many sub-elements, the single finite element of the main bound-
ary value problem can therefore simulate a single propagating strong discontinuity arising in quasi-static
problems as well as the propagation of multiple propagating strong discontinuities arising for simula-
tions of crack branching in brittle materials undergoing dynamic failure. Whereas the advantages of
the strong discontinuity approach in the form of its efficiency by statically condensing out the degrees
of freedom related to the failure zone as well as its applicability to use standard displacement based,
mixed, and enhanced formulations for the underlying finite element are kept, new challenges arise
due to its proposed modification. Firstly, the solutions of the different sub-boundary value problems must
be transferred to the main boundary value problem, which is achieved in this work based on concepts of
domain decomposition. Secondly, since multiple strong discontinuities might propagate over the bound-
aries of the sub-boundary value problem, the applied boundary conditions must take into account the
appearance of possible jumps in the displacement fields arising from the solution of the sub-boundary
value problem itself. It is shown that for single propagating cracks arising in problems of quasi-static fail-
ure only minor differences are obtained through the proposed modification. For the simulation of solids
undergoing dynamic fracture the modification allows though to predict the onset of crack branching
without the need for any artificial crack branching criterion. A close agreement with experiments of
the simulation results in terms of micro- and macro branching in addition to studying certain key param-
eters like critical velocity, dynamic stress intensity factor, and the strain energy release rate at branching
is found.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of solids at failure remains one of the most chal-
lenging topics in computational mechanics. In addition to a raised
understanding of traditional engineering materials it allows to
contribute to the search for new advanced materials for which
the determination of failure is of highest importance. The incorpo-
ration of cracks or shear bands as the characteristic microstructure
of failing solids, commonly referred to as strong discontinuities
representing jumps in the primary unknowns such as the displace-

ment field for purely mechanical problems, into numerical frame-
works such as the finite element method are possible only through
highly advanced frameworks. Still, all numerical methods have in
common the challenge of predicting the onset of failure and the
determination of the direction of the propagating strong disconti-
nuity if resolved discretely. This complexity is further raised when
dynamic instabilities are accounted for, which arise in problems of
dynamic fracture such as for crack branching phenomena to be
considered in this work. Early experimental literature about dy-
namic fracture can be found in experiments by Kobayashi et al.
[36], Kobayashi and Ramulu [35], Ramulu and Kobayashi [65]
and Ramulu et al. [66] on thin sheets of a brittle material Homa-
lite-100 who attributed the phenomena of crack branching to the
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critical stress intensity factor at the crack-tip. Ravi-Chandar and
Knauss [69,67,68] with their series of experiments of dynamic frac-
ture also found similar relations of crack branching with the criti-
cal stress intensity factor. More recent experiments by Fineberg
et al. [22,23], Sharon et al. [72] as well as Sharon and Fineberg
[71] performed on the brittle material PMMA shed more light on
the instabilities associated with the fast moving crack in dynamic
fracture where micro- branching phenomena were observed before
the main branching, which tend to take place at a critical main
crack-tip velocity as suggested by Yoffe [79].

A large number of numerical techniques have been developed
over the past decades, all with certain advantages for different
applications. Adaptive remeshing techniques such as those in Ortiz
and Quigley [60], Pandolfi and Ortiz [61], Heintz et al. [31], or Mie-
he and Gürses [50] in ndim dimensions for example align their finite
element boundaries along the propagating crack, which on the one
hand are computationally expensive but on the other hand do al-
low for the proper accuracy at highly refined crack tips by increas-
ing the number of critical nodes at the failure zone based on some
error estimator. The failure for such approach is modeled by the
insertion of ðndim � 1Þ dimensional finite elements in between the
elements of which the specimen under consideration consists,
along which specific traction-separation laws are used. The first
approach, which allowed for the propagation of strong discontinu-
ities through the individual finite element goes back to the seminal
work of Simo et al. [73] and is commonly referred to as the strong
discontinuity approach. This framework, later extended to the two
and three dimensional continuum within the infinitesimal and
the finite deformation setting in Armero and Garikipati [5], Oliver
[58], Mosler and Meschke [55], or Oliver et al. [59] relies on a mul-
tiscale approach as outlined in Armero [1,2] through which the
overall boundary value problem is divided into a global problem,
as the standard problem to be solved, and a local problem through
which each point in the global problem is capable of developing a
strong discontinuity. Extensions to multiphysics problems are per-
formed in Steinmann [75] or Callari and Armero[15] for porous
media and in Linder et al. [44], Linder and Miehe [43], Linder
[40] for piezo- and ferroelectric ceramics where in addition to
the jumps in the displacement field also jumps in the electric
potential arise. The methodology allows for the development of
new finite elements by the incorporation of certain separation
modes directly into the finite element framework. This is achieved
in Ehrlich and Armero [20], Amero and Ehrlich [4] for beams and
plates, in Linder and Amero [41] and Armero and Linder [6] for
the 2D continuum, in Armero and Linder [7] and Linder and Armer-
o [42] for problems in dynamic fracture, in Linder et al. [44] for
electromechanical coupled problems, and in Armero [3] for anti-
plane/torsional problems. Alternative approaches to the strong dis-
continuity concept are the extended finite element method
[12,54,76,77,29,48], which also allows for the propagation of the
strong discontinuities through the individual finite elements but
with a higher computational cost or phase field models [24,14,52]
in which the strong discontinuity is smeared over a finite width
rather than captured in a discrete way, which allows for the simu-
lation of complex crack patterns but requires a highly dense finite
element discretization.

Focusing on a modification of the way how the strong disconti-
nuity approach is applied to model failure in solids in this work, its
advantage over alternative strategies given by its computational
efficiency, which comes from relatively coarse finite element
meshes which can be used to describe the failure process, shall
be kept. Still, a certain density of the meshes is needed in particular
in areas where materials failure is probable, like around notches or
at corners. The goal of this work is to retain a coarse finite element
mesh regardless of possible areas of fracture and instead introduce
a second level of computation at a finite element where fracture

takes place with their coupling achieved through the method of
domain decomposition found in Park and Felippa [62], Park et al.
[63], or Lloberas-Valls et al. [46], which allows the partitioning of
a domain into certain sub-domains where those are connected to
the main domain by a coupling based on the Lagrange multiplier
method. Applications for heterogeneous materials can be found
in Markovic et al. [47], Niekamp et al. [57], or Lloberas-Valls
et al. [45]. The different length scales considered in this work are
finitely separated, which makes this class of method different from
the classical homogenization methods in [26,27,51,49,39,21]
where the length scales considered are substantially separated
with a coupling introduced at each quadrature point where mi-
cro-scale computations are performed on a representative volume
element. An attempt to model failure with a discrete resolution of
the strong discontinuities with these classical homogenization
methods can be found in Belytschko et al. [13] and Song and Bely-
tschko [74] where the power theorem [32] is extended to account
for failure within the representative volume element for coupling
between the different scales.

In this work, a new sub-domain is introduced at each finite ele-
ment of the main boundary value problem in front of the crack tip
representing the process zone of the propagating crack. Such, so
called sub-boundary value problem is treated by the strong discon-
tinuity approach and allows for the modeling and prediction of
failure. In particular, single or multiple strong discontinuities can
start to grow within the sub-boundary value problem in that
way allowing for crack tips as well as the presence of multiple
cracks within the interior of the finite elements of the main bound-
ary value problem to e.g. model the bi- and trifurcation phenom-
ena related to crack branching. Challenges arise when the strong
discontinuities propagate out over the boundaries of the intro-
duced sub-boundary value problem into the next sub-boundary
value problem being initiated automatically during run-time. In
such a scenario the accurate application of the chosen boundary
conditions at the sub-boundary value problem is of major impor-
tance. Displacement based boundary conditions, e.g. linearly dis-
tributed over the boundary of the sub-boundary value problem
based on the nodal values arising from the main boundary value
problem, become invalid due to the jump in the displacement field
also present along the sub-boundary value problem’s boundary
[17]. Therefore, an emphasis of the present work lies in the devel-
opment of proper boundary conditions at the sub-boundary value
problem level. It is furthermore shown that whether the crack con-
tinues as a single discontinuity or divides itself into two or three
crack branches, is solely determined by the stress state at the
sub-elements so that no crack-tip velocity criterion is needed to
determine the branching scenario.

The outline of the rest of this paper is as follows. Section 2 pre-
sents the changes introduced to the strong discontinuity approach
when extending it to multiple levels. After its derivation for the
quasi-static and the fully transient setting within the continuum
framework in Section 2.1, it is extended to the discrete finite ele-
ment framework in Section 2.2. Thereafter, the coupling between
the multiple levels arising in the form of the main boundary value
problem and the sub-boundary value problems is achieved in Sec-
tion 2.3 by matching the virtual energy on both levels. An empha-
size is directed in Section 2.4 towards the determination of
modified boundary constraints accounting for the presence of dis-
placement jumps along the boundary of the sub-boundary value
problem, which becomes particularly challenging in the presence
of multiple strong discontinuities propagating out of the sub-
boundary value problem. Section 3 outlines in detail the numerical
implementation of the boundary value problems on both levels
and provides a detailed investigation of the numerical coupling
procedure. Representative numerical simulations of problems
within the quasi-static case are shown in Section 4. After assuring
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