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a b s t r a c t

In this work we propose a stabilized finite element method that permits us to circumvent discrete inf–
sup conditions, e.g. allowing equal order interpolation. The type of method we propose belongs to the
family of symmetric stabilization techniques, which are based on the introduction of additional terms
that penalize the difference between some quantities, i.e. the pressure gradient in the Stokes problem,
and their finite element projections. The key feature of the formulation we propose is the definition of
the projection to be used, a non-standard Scott–Zhang projector that is well-defined for L1ðXÞ functions.
The resulting method has some appealing features: the projector is local and nested meshes or enriched
spaces are not required.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many physical problems in science and engineering are mod-
eled with partial differential equations without a coercivity prop-
erty, e.g. the (Navier–)Stokes equations for incompressible flows,
Darcy’s problem for flux in porous media, and some versions of
the Maxwell equations. At the continuous level, these saddle-point
problems are well posed by virtue of some inf–sup condition. As
model problem, let us consider Stokes’ system on a bounded open
domain X with homogeneous boundary conditions:

�mDuþrp ¼ f ; r � u ¼ 0; uj@X ¼ 0; ð1Þ

where u is the velocity, p the pressure, m the fluid viscosity and f the
body force. Using standard notation, we can state the problem in
weak form: find ðu;pÞ 2 H1

0ðXÞ � L2
0ðXÞ such that

cðu;p;v ;qÞ :¼ mðru;rvÞ�ðp;r�vÞþðq;r�uÞ¼ hf ;vi¼: ‘ðvÞ ð2Þ

for any ðv ; qÞ 2 H1
0ðXÞ � L2

0ðXÞ. For the Stokes problem, pressure sta-
bility relies on the following inf–sup condition: for any p 2 L2

0ðXÞ,
there exists a vp 2 H1

0ðXÞ with unit norm such that
bkpkP ðp;r � vpÞ, for some b > 0. Unlike coercivity, inf–sup condi-
tions are not inherited by sub-spaces of functions, complicating
Galerkin approximations. We have to explicitly build finite element
(FE) spaces that satisfy discrete versions of the inf–sup conditions,
and appealing choices such as equal-order interpolation for all the

unknowns cannot be used [8]. The situation is slightly more in-
volved in general, since the well-posedness of saddle-point prob-
lems only requires coercivity on the kernel of the constraint
operator, e.g. the Maxwell and Darcy problems [14].

The use of inf–sup stable formulations can be particularly
impractical in multi-physics simulations of saddle-point systems,
i.e. inductionless magnetohydrodynamics (MHD) (coupling Stokes
and Darcy-type problems, see [21]) or incompressible visco-resis-
tive MHD (coupling Stokes and Maxwell-type problems, see [3]).
This approach requires different FE spaces for the different un-
knowns [22], complicating the integration subroutines and the ma-
trix graph (a different graph for every block of the full matrix is
needed). In other situations, in which different asymptotic limits
of the problem (in terms of the physical parameters) lead to differ-
ent saddle-point systems, e.g. the Brinkman model for creeping
flow in porous media, the inf–sup stable approximation cannot
lead in general to unconditional stability, since different limits re-
quire different FE spaces (see [1]).

Alternatively, we can consider stabilized FE techniques, which
consist in the introduction of additional (stabilization) terms that
provide the numerical method with the proper stability without
the need to satisfy discrete inf–sup conditions. Initially, the stabil-
ization terms were based on the residual at FE interiors, as in the
popular Galerkin/least-squares (GLS) method [16] and the im-
proved Variational Multiscale (VMS) method [17] proposed by
Hughes and co-workers. Let us consider a partition T h of X into tet-
rahedra/hexahedra, denoted by K, and conforming FE spaces
Vh � Qh � H1

0ðXÞ � L2
0ðXÞ. The stabilized methods GLS (h ¼ �1)

and VMS (h ¼ 1) read as:
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cðuh;vh;ph; qhÞ þ
X
K2T h

dKð�Duh þrph; hDvh þrqhÞK

¼ ‘ðvhÞ þ
X
K2T h

dKhf ; hDvh þrqhiK ; ð3Þ

where dK is a numerical parameter to be defined later. These meth-
ods allow equal-order interpolation, are consistent and exhibit opti-
mal convergence rates. On the other side, they are usually criticized
for giving unphysical pressure boundary layers [5], for the addi-
tional cost involved in the evaluation of higher order derivatives
and the weak inconsistency for first order approximations [18],
the fact that the forcing term is also affected by the stabilization
and the hard extension to transient problems [13], usually carried
out via expensive space–time FEs (see e.g. [24]). Probably, the main
shortcoming of GLS, VMS and related residual-based formulations is
manifested when dealing with multi-physics applications. These
stabilized FE formulations include a large number of additional cou-
pling terms, which fill blocks that are zero for the Galerkin method;
see [21,3] for MHD applications. Another important problem related
to these methods is the fact that they destroy the skew-symmetric
form of the off-diagonal blocks (stabilized gradient and divergence
matrix) in the Navier–Stokes and MHD systems, making pressure-
segregation (fractional step) methods to lose their unconditional
stability (see [4]).

The introduction of symmetric stabilization techniques repre-
sented one step further in the improvement of FE stabilization
techniques, since they solve all the problems commented above.
Instead of considering residual-based terms, these methods intro-
duce penalty terms over the difference between some quantities,
i.e. the pressure gradient for the Stokes problem, and their projec-
tions. This family of methods does not perturb the right-hand side
of the problem, and stabilizes the bilinear form as follows:

cðuh;vh;ph; qhÞ þ
X
K2T h

dKðrph � phðrphÞ;rqh � phðrqhÞÞK ¼ ‘ðvhÞ;

where phð�Þ is a FE projector; different definitions for phð�Þ lead to
different techniques. The resulting method is only weakly consis-
tent, i.e. the stabilization term does not cancel for the exact solution
but vanishes as the mesh size h& 0 in such a way that optimal con-
vergence is kept. Motivated by the inherited stability of fractional
step methods, Codina and Blasco provided in their pioneering work
[12] the first algorithm of this kind, based on the L2ðXÞ-orthogonal
projector, coined orthogonal subscales (OSS). Unfortunately, this
projector is global, i.e. the stabilization term leads to a dense matrix.
Certainly, the method is never computed this way, and the projec-
tion is usually sent to the right-hand side of the linear system. In
case of solving transient problems, it can simply be treated explic-
itly. In those situations, for reasonably small time step sizes, the OSS
method has perfect sense and it is an effective and simple algo-
rithm, since the CPU cost per time step used for the computation
of the global projections in negligible. On the contrary, to send
the projection term to the right-hand side, and make it implicit
via Richardson iterations (usually merged with nonlinear iterations
[11]) is not advisable unless a very small time-step size is used,
since it can drastically increase the number of nonlinear iterations
or simply diverge; this approach is even harder to justify for linear
problems as the Stokes system. An alternative consists in dealing
with the exact matrix, explicitly solving the mass matrix systems
for the projection evaluations at every iteration of an external Kry-
lov solver. This approach is hard to implement and prevent us to use
direct solvers, and by extension substructuring domain decomposi-
tion techniques with exact local solvers [25].

Becker and Braack envisaged in [5] an original way to avoid the
global projections in [12]. Their method was later called local pro-
jection stabilization (LPS). The price to pay is a tighten requirement
over the mesh partitions: specific hierarchical meshes were

needed, since the method is based on the definition of fine and
coarse FE spaces. On the other hand, the projection is not over
the original FE space, as in [12], but on a discontinuous space of
functions. The original LPS formulation has been lately denoted
as two-level LPS, due to the requirement of two nested meshes
for the definition of the stabilization terms. A one-level LPS formu-
lation has also been designed [19], in which the fine space is at-
tained with an enrichment of the coarse one via additional
functions of bubble type. This way, we can eliminate the stringent
mesh requirement but now a particular type of enriched FE spaces
must be used.

The development of stabilized FE methods that allows one to
circumvent inf–sup conditions has been almost entirely developed
for the Stokes problem and the nonlinear Navier–Stokes equations.
The extension to problems that only present coercivity in the ker-
nel of the constraint operator is more recent. We refer to [2] for a
detailed exposition of VMS and symmetric projection stabilization
schemes for Darcy’s and Maxwell’s problems.

The purpose of this work is to present a new method, based on a
particular L1ðXÞ Scott–Zhang projector that shares all the afore-
mentioned benefits of symmetric stabilization techniques as well
as: only local projections are required, no assumption over the mesh
partition (e.g. nested meshes) is needed and no assumption over the
FE spaces (e.g. equal-order Lagrangian FEs can be used without
additional enrichment) is needed.

In Section 2, we introduce some notation, as well as the defini-
tion of the method and implementation aspects. Section 3 is de-
voted to the numerical analysis of the algorithm, both stability
and a priori error estimates. Some numerical tests are presented
in Section 4. Finally, we draw some conclusions in Section 5.

2. Definition of the method

Let us consider the Stokes problem (2) for an open, bounded
polyhedral domain X in Rd, where d ¼ 2;3 is the space dimension.
We will use standard notation for Sobolev spaces (see [7]). In par-
ticular, the L2ðxÞ scalar product will be denoted by ð�; �Þx for some
x � X, but the domain subscript is omitted for x � X (analogously
for the duality pairing h�; �i). The L2ðXÞ norm is denoted as k � k. We
will define the velocity and pressure spaces as V0 � H1

0ðXÞ and
Q � L2

0ðXÞ, endowed with the norms kvkV :¼ m1
2krvk and

kqkQ :¼ m�1
2kqk, properly scaled with the fluid viscosity m. C0ð�XÞ de-

notes the space of continuous functions. We will omit the d super-
script in vector-valued functional spaces.

Let us consider now a partition T h of X into d-simplices, quad-
rilaterals (d ¼ 2) or hexahedra (d ¼ 3) where every K 2 T h is the
image of a reference element bK through an affine mapping
FK : bK ! K (see [9, Chp. 2]); we can assume that every edge of bK
has length one. PrðbK Þ is the space of complete polynomials of de-
gree r on bK . For d-simplicial FE partitions, we define the space of
element-wise discontinuous functions

Dh :¼ fvh : vhjK � FK 2 PrðbK Þ; K 2 T hg:
The continuous FE spaces are obtained by enforcing continuity,
namely Vh :¼ Dh \ C0ð�XÞ and Qh :¼ Dh \ C0ð�XÞ \ L2

0ðXÞ for the veloc-
ity and pressure respectively. We will also make use of the FE space
with null trace Vh;0 :¼ Vh \ H1

0ðXÞ. The order of approximation r to
be used for velocity and pressure approximations can be different.
For quadrilaterals and hexahedra, the spaces are obtained by replac-
ing PrðbK Þ by QrðbK Þ, the space of polynomials with maximum degree
r in each reference space coordinate on bK .

For the FE space Vh we denote by N h the set of all interpolation
nodes related to T h and by f/aga2N h

the corresponding nodal basis
of Vh. We also denote by N hðKÞ the set of all nodes that belong to a
FE K. Continuous FE functions can be written as vh ¼

P
a2N h

va
h/

aðxÞ,
where va

h denotes the nodal value of vh corresponding to a. Analo-
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