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a b s t r a c t

Failure of geomaterials with pores filled with fluids is an important research area in both civil and geo-
logical engineering. Many finite element formulations for coupled problems present difficulties such as
overestimating failure loads, or mesh alignment dependence resulting on spurious failure mechanisms.
Moreover, the spaces where field variables are approximated have to fulfill additional requirements
ensuring stability. Stress-velocity-pore pressure formulations in FE analysis provide accurate results
for wave propagation and failure analysis. However, finite elements present important limitations when
deformations are large. The purpose of this paper is to present a stabilized Fractional Step, SPH algorithm
which combines the advantages of the SPH method for large deformation problems with those of the
Taylor Galerkin algorithm used within the finite element framework.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

There are special cases in solid mechanics where the material
has interconnected voids which are filled with one or more fluids.
An example of great interest in civil and geological engineering is
that of soils and rocks, where the overall mechanical behavior is
governed by this coupling.

Engineers have to predict the behavior of soil and rock geostruc-
tures such as earth dams, dykes, foundations and natural slopes
both under design loads and at failure. The accurate determination
of failure loads and mechanisms will help to reinforce the structure
if necessary. Frequently, failure is a dynamic process, and even in
cases where triggering of failure is quasi static, the analysis has
to take into accounts accelerations occurring in the post failure
regime.

The coupling which exists between pore fluids and the solid
skeleton results on a mathematical model where displacements
(or velocities), effective stresses and pore pressures are necessary
to fully characterize the problem.

Coupled formulations, when discretized, may result on instabil-
ities caused by the nature of functional spaces where the governing
variables are approximated. In order to avoid them, Babuska–
Brezzi conditions [1,2] have to be satisfied.

In finite element analysis, it is well known how failure mecha-
nisms and limit loads may depend on the type of element used.
Indeed, most of displacement based formulations, specially those

using low order elements such as triangles and tetrahedra present
problems of (i) overestimating failure loads or locking, (ii) provid-
ing spurious failure mechanisms (mesh alignment effects), and (iii)
not being able to provide accurate results in cases where shocks
are propagating because the numerical diffusion and dispersion
properties of the schemes.

The solutions are: (i) using mixed elements including displace-
ments and pressures as main variables which avoids locking but
not alignment effects [3], (ii) use enhanced strain methods [4],
which provide an excellent solution for both locking and alignment
problems. However, if enhanced strain elements are used for cou-
pled problems in geomechanics, special stabilization techniques
have to be used [5,6].

As an alternative, mixed stress-velocity formulations provide
good accuracy for computation of limit loads and failure mecha-
nisms, together with good propagation properties. It is worth men-
tioning here the pioneering works of Cantin et al. [7] and
Zienkiewicz and Boroomand [8], and those more recent of Cervera
et al. [9,10] and Codina [11].

The authors have proposed – within the FE framework – a
Taylor Galerkin algorithm formulated in stress, velocity and pore
pressures for non linear solid and soil dynamics problems [12–15].
It consists of casting the balance of momentum and constitutive
equations as a system of first order hyperbolic equations. The
Taylor Galerkin method was introduced independently by Donea
[16] and Lohner et al. [17], and applied to fluid dynamics problems
by Peraire et al. [18], and Donea et al. [19]. The interested reader
can find a detailed description in the text by Zienkiewicz and
Taylor [20].
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Concerning failure, it involves large deformations. Here, mesh-
less Lagrangian methods such as the Smooth Particle Hydrodynam-
ics (SPH), can deal with the problem in a natural manner, without
the difficulties encountered in mesh based methods where mesh
refinement has to be performed.

The Smoothed Particle Hydrodynamics (SPH) is the first mesh-
less method which has been proposed. It was applied to model
astrophysical problems [21,22]. From there, it was extended to
classical hydrodynamics problems [23]. Today SPH is used in many
areas, among which it is worth mentioning magneto-hydrodynam-
ics [24], multi-phase flows [25], viscous flows [26], quasi-incom-
pressible flows [27,28], flows through porous media [29], metal-
forming [30], impact problems [31], elastodynamics problems
[32], fast landslide propagation [33,34] and fluid structure interac-
tions [35]. Recently and for the first time, SPH has been applied to
soils problems involving soil–water interaction [36] and failure
[37]. It is also worth-mentioning the work of Vidal et al. who pro-
posed a stabilized updated lagrangian SPH [38].

Concerning the disadvantages and difficulties presented by the
SPH method we can mention (i) The boundary deficiency problems
which can be solved by applying a normalization to the Smoothed
Hydrodynamics method [39], and (ii) the tensile instability which
appear in dynamics problems with material strength [40–42].

Concerning the coupling between the solid skeleton and the
pore fluid, we will show in the paper that if the compressibility
of solid grains and water are very small, and the permeability tends
to zero, the structure of the model is similar to that of incompress-
ible solids and fluids, including a zero divergence condition for the
velocity field. We will use here a Fractional Step technique pro-
posed by Chorin [43] which allows the use of the same approxima-
tion spaces for velocities and pore pressures.

The purpose of this paper is to present a Fractional Step algo-
rithm which can be used to analyze the behavior of saturated geo-
structures. It is an extension of previous work done by the authors
within the FE framework.

The main goals are the following:

(i) Development of a Fractional Step (FS) algorithm for coupled
problems in geomechanics avoiding instabilities. The spatial
discretization technique used is the SPH.

(ii) Using a Taylor-SPH model in the first step of the FS algo-
rithm, which avoids tensile instability problems.

The paper is structured as follows: After a first introductory section,
we present in Section 2 the mathematical model describing the cou-
pled behavior of geomaterials in terms of effective stresses, veloci-
ties and pore water pressures. Section 3 is devoted to describe the
proposed Fractional Step, Taylor SPH algorithm. Finally, we present
in Section 4 several examples showing the behavior of the proposed
model, including a case for which there exists an analytical solution.

2. Mathematical model

Soils and rocks are geomaterials with voids which can be filled
with water, air, and other fluids. They are, therefore, multiphase
materials, exhibiting a mechanical behavior governed by the cou-
pling between all the phases. Pore pressures of fluids filling the
voids play a paramount role in the behavior of a soil structure,
and indeed, their variations can induce failure. If we consider the
soil as a mixture, we will have equations describing: (i) balance
of mass for all phases, i.e., solid skeleton, water and air, in the case
of non saturated soils (ii) balance of linear momentum for pore flu-
ids and for the mixture, and (iii) constitutive equations. A crucial
point is the choice between eulerian and lagrangian formulations.
In soil mechanics, the approach followed most often is mixed,

lagrangian for the skeleton and eulerian for the relative movement
of the pore fluids relative to the soil skeleton. In many occasions,
convective terms can be neglected. We will cast the model in terms
of effective stresses, which are responsible for the soil skeleton
deformation. Taking tractions as positive, we will have:

r ¼ r0 � pwI ð1Þ

where r0 is the effective stress tensor, pw the pore pressure, and I
the second order identity tensor.

The first mathematical model describing the coupling between
solid and fluid phases was proposed by Biot [44,45] for linear elas-
tic materials. This work was followed by further development at
Swansea University, where Zienkiewicz and coworkers [46–49] ex-
tended the theory to non-linear materials and large deformation
problems. It is also worth mentioning the work of Lewis and
Schrefler [50], Coussy [51] and de Boer [52].

We will describe here a variation of the u � pw model of
Zienkiewicz and coworkers [47] which has been written in terms
of velocities. We will refer to it as v � pw. The model will be formu-
lated using an updated Lagrangian framework. The basic idea is
that at each time station we use the actual configuration as a ref-
erence of a Lagrangian analysis. After all relevant increments of
this time step the coordinates of the nodes are updated, providing
a new configuration which will be used as initial in the following
time step.

Concerning objective rates of the involved variables, we will use
the Jaumann-Zaremba rate of the Cauchy stress tensor r, and the
rate of deformation tensor d, given by:

r
r
¼ Dr

Dt
þ r �x�x � r ð2Þ

And

d ¼ gradsymv or dij ¼
1
2

@v i

@xj
þ @v j

@xi

� �
ð3Þ

where we have introduced the anti symmetric tensor x, which is
usually referred to as the spin tensor, with components given by

xij ¼
1
2

@v i

@xj
� @v j

@xi

� �
ð4Þ

If we assume that relative velocities and accelerations of fluids rel-
ative to solid skeleton are small, the model can be cast in terms of
velocity of the solid skeleton v and Darcy’s velocities of pore fluid
w. We will consider first the balance of mass and linear momentum
equations for the pore water, which will be written as:

divðwÞ þ divv þ 1
Q

dpw

dt
¼ 0 ð5Þ

where we have introduced the mixed volumetric stiffness Q as:

1
Q
¼ 1� n

Ks
þ n

Kw

� �
ð6Þ

Where n is the porosity and Ks and Kw are the volumetric stiffnesses
of the soil particles and water respectively.

The balance of linear momentum for the pore fluid is written as:

qw
dv
dt
þ qw

d
dt

w
n

� �
þw

n
gradv þww

n
grad

ww

n

� �� �

¼ �gradpw þ qwb� k�1
w w ð7Þ

where qw is the density of the pore water, w the Darcy velocity, and
kw
�1 the inverse of the permeability tensor. We will assume that

permeability is isotropic and can be represented by the scalar kw.
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