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a b s t r a c t

We propose a new approach to the enforcement of Dirichlet, Neumann, or Robin boundary conditions in
finite element computations of wave propagation problems. The key idea is to enforce the boundary con-
ditions weakly as part of the variational formulation. Due to the hyperbolic structure of the problem con-
sidered, the variational formulation does not require any penalty parameters, in contrast with what
typically happens in elliptic or advection–diffusion (parabolic) problems. This article presents the imple-
mentation of the proposed boundary condition framework using a variational multiscale method for the
wave equation in mixed form. We conclude with an extensive set of tests to validate the robustness and
accuracy of the proposed approach.

Published by Elsevier B.V.

1. Introduction

Weak boundary conditions are enforced using the variational
formulation associated with a partial differential equation (PDE)
problem, rather than directly incorporating the boundary values
in the function spaces used to represent the solution.

Weak boundary conditions can be traced back to the late 1960s.
Lions [49] considered the problem of solving elliptic PDEs with very
rough Dirichlet boundary data, and proposed a formulation in
which the Dirichlet boundary condition is replaced by a Robin con-
dition depending on an artificial penalty. Aubin [1] extended this
approach in the framework of finite difference approximations of
nonlinear problems. A consistent and optimal penalty formulation
for Dirichlet boundary conditions for elliptic problems had been
proposed by Nitsche [52]. More recently, the authors in [2,3] uti-
lized weak enforcement of boundary conditions for advection–dif-
fusion problems, the Navier–Stokes equations, and turbulence, and
showed improved results in the presence of boundary layers.

The computational data structure of a finite element method is
often times simplified by the use of weak boundary conditions, as

it is not necessary to directly prescribe the values of the numerical
solution’s boundary degrees of freedom. The reader can already
realize this fact considering no slip boundary conditions for the Na-
vier–Stokes equations [2,3]. As will be discussed momentarily, the
advantages are even greater in the context of wave propagation
problems, which require inviscid, zero normal flux boundary con-
ditions, and in nonlinear systems, in which strong enforcement
of boundary conditions may lead to lack of discrete conservation
principles.

In this work we propose a new approach to weak boundary con-
ditions in the context of an abstract linear wave equation in mixed
form, of great importance in time-domain acoustics problems, often
arising in seismic inversion/detection applications. In addition, the
mixed form of the wave equation under consideration is also a sim-
plified model for more complex nonlinear equations, such as, among
many others, the compressible flow equations of Lagrangian shock
hydrodynamics [50,55–61], nonlinear acoustics, shallow water
flows, and meteorological flows [14,29,30,38–46,48,51,54,62,63].

In particular, we consider the case of media which only allow for
longitudinal waves, also referred to as ‘‘bulk’’ or ‘‘P’’ waves. We will
not consider non-reflecting boundary conditions, for which consid-
erable literature exists (see [15–28,31,47,53] and references
therein).

The simplest possible boundary conditions in the context of
longitudinal waves involve enforcing either the pressure or the
normal velocity component. Although in engineering mechanics
the pressure is considered as the diagonal component of a stress
tensor, in longitudinal wave problems pressure boundary condi-
tions are of Dirichlet type, while the normal velocity boundary
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conditions are of Neumann type. As discussed also in Section 2, this
situation is somewhat reversed with respect to waves in solids, in
which the full velocity component can be imposed as a Dirichlet
boundary condition, while the stress boundary condition is of Neu-
mann type. This is due to the fact that the spatial differential oper-
ators in the mixed equations for longitudinal waves have a
structure analogous to the Darcy flow operator, while spatial dif-
ferential operators in the mixed equations for waves in solids have
a structure similar to the Stokes flow operator.

Codina analyzed in [9] a stabilized method in which both pres-
sure and normal velocity boundary conditions were enforced
strongly. The authors in [4,11–13,35–37], instead, using finite ele-
ments of Raviart–Thomas type, enforced the pressure (Dirichlet)
boundary condition weakly while the normal velocity (Neumann)
boundary condition was enforced strongly, using a spatial discreti-
zation often employed for Darcy flow problems.

Our approach differs from the ones above in that both Dirichlet
and Neumann boundary conditions are imposed weakly. The
advantage of this strategy is that equal-order approximations can
be employed for pressure and velocity (thanks to the use of a var-
iational multiscale stabilized formulation), and that imposition of
the normal velocity boundary condition is incorporated in the var-
iational form. Equal-order interpolations can be quite useful, since
Raviart–Thomas finite elements generate non-diagonal mass
matrices which involve linear matrix solves in the time-integration
procedure. Recently, mass lumping techniques have been proposed
to improve efficiency in computations with Raviart–Thomas
approximation spaces [4,11]. Needless to say that equal-order con-
tinuous finite elements allow for very standard mass lumping
strategies when required for efficiency. Weak boundary conditions
are particularly useful when considering complex geometry do-
mains, in which the normal velocity component has to be enforced
on curved surfaces. In this case it can be quite tedious to strongly
constrain the components of the velocity at the nodes so that the
normal velocity boundary condition is satisfied strongly.

In the case of nonlinear systems, the situation can become
much more complicated when trying to strongly enforce the nor-
mal components of the velocity at the mesh nodes, due to addi-
tional algorithmic constraints. For example, while in linear
problems discrete conservation is not always considered essential,
in nonlinear equations it often gains a fundamental role. Consider-
ing Lagrangian shock flow problems (which require the same pres-
sure and normal velocity boundary conditions as the wave
propagation problems discussed here), the specific definition of
normals at the nodes of the mesh has a direct consequence on
whether or not the resulting numerical algorithm will be conserva-
tive. If conservation is the goal when using strong normal velocity
boundary conditions, then one (if not the only) option possible is to
evaluate the values of the surface normals at the mesh nodes by
means of a global optimization problem with the conservation
statement as a constraint. On the other hand, weak normal velocity
boundary conditions guarantee conservation for these more com-
plicated nonlinear systems with minimal implementation effort.

We also note that due to the particular hyperbolic structure of
the problem under consideration, our formulation of weak bound-
ary conditions does not rely on penalty parameters, in contrast to
previous approaches targeting elliptic and parabolic equations
[2,3]. In more complex nonlinear systems, this aspect is also of
importance, since often times the appropriate choice of the penalty
parameter may result in a tedious exercise, or even lead to some-
what unsatisfactory results.

The rest of the exposition is organized as follows: Section 2 is de-
voted to presenting the equations of propagation for longitudinal
waves. The general variational setting is discussed in Section 3. In
Section 4, we present the framework of weak boundary conditions
and we also propose a specific numerical implementation using a

variational multiscale method derived from the work in [61]. The
results of numerical experiments to test and demonstrate the pro-
posed boundary condition framework are analyzed in Section 5.
Conclusions are summarized in Section 6.

2. General equations

The present work is focused on the propagation of waves in
confined (bounded) domains. It is not our purpose to investigate is-
sues related to unbounded domains or open, nonreflective bound-
ary conditions [15–28,31,47,53]. We are considering the classical
equations of wave propagation in mixed form, specific to materials
for which the stress tensor is given by a pressure term. Let X be an
open and bounded set in Rnd (where nd is the number of spatial
dimensions) and consider the system of equations given by:

q@tv þ $xp ¼ qb; ð1Þ
@tpþ qc2

s $x � v ¼ 0: ð2Þ

Here, $x and $x� are the gradient and divergence operators, @t indi-
cates derivation with respect to time, and b is a body force. These
equations describe the propagation of disturbances in a medium
of density and wave speed given by q and cs, respectively. Complete
specification of the problem requires initial conditions p = p0(x) and
v = v0(x) at t = 0, and appropriate boundary conditions.

Assuming that the boundary C = oX is partitioned as Cg [ Ch,
Cg \Ch = ;, pressure boundary conditions are enforced on the
Dirichlet boundary Cg, that is,

pjCg
¼ gðx; tÞ; ð3Þ

and normal velocity boundary conditions are enforced on the Neu-
mann boundary Ch,

v � njCh
¼ hðx; tÞ; ð4Þ

where n is the outward-pointing normal.

Remark 1. In the context of longitudinal wave propagation in fluids
the boundary condition setting is somewhat reversed with respect
to the case of wave propagation in solids. In the latter case, velocity
boundary conditions are of Dirichlet-type and stress boundary
conditions are of Neumann type, since tangential waves are present
in addition to longitudinal waves. This leads to the connection
between waves in solids and the Stokes flow problem, and between
longitudinal waves in fluids and the Darcy flow problem.

The structure of Eqs. (1) and (2) is common to many other
mechanical systems, such as non-dissipative acoustics, gravity
wave propagation in shallow water flows, simplified models for
global circulation of meteorological flows, and more generally,
the propagation of longitudinal waves in non-dissipative media.
In the case of acoustics, these equations can be derived by lineari-
zation of the compressible Euler equations characterizing inviscid
fluids, as shown in [64, p. 158] or also [61]. We will always con-
sider the case when q and cs are finite and positive. Denoting by
f = qcs the characteristic impedance of the medium, and introducing
the parameter v = q f�2, we can rearrange the previous equations
as follows:

q@tv þ $xp ¼ qb; ð5Þ
v@tpþ $x � v ¼ 0; ð6Þ

or, in vector operator form,

qInd�nd
0nd�1

01�nd
v

� �
@

@t
þ

0nd�nd
$x

$x� 0

� �� � v
p

� �
¼

qb
0

� �
: ð7Þ

In the case of constant material properties q and cs and zero forcing
term b, it is not difficult to see that, by combining appropriate
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