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a b s t r a c t

Dynamic Data-Driven Application Systems—DDDAS—appear as a new paradigm in the field of applied sci-
ences and engineering, and in particular in Simulation-based Engineering Sciences. By DDDAS we mean a
set of techniques that allow to link simulation tools with measurement devices for real-time control of
systems and processes. In this paper a novel simulation technique is developed with an eye towards
its employ in the field of DDDAS. The main novelty of this technique relies in the consideration of param-
eters of the model as new dimensions in the parametric space. Such models often live in highly multidi-
mensional spaces suffering the so-called curse of dimensionality. To avoid this problem related to
mesh-based techniques, in this work an approach based upon the Proper Generalized Decomposition—
PGD—is developed, which is able to circumvent the redoubtable curse of dimensionality. The approach
thus developed is composed by a marriage of DDDAS concepts and a combination of PGD ‘‘off-line’’ com-
putations, linked to ‘‘on-line’’ post-processing. In this work we explore some possibilities in the context of
process control, malfunctioning identification and system reconfiguration in real time, showing the
potentialities of the technique in real engineering contexts.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction: Dynamic Data-Driven Application Systems
(DDDAS)

Traditionally, Simulation-based Engineering Sciences (SBES)
relied on the use of static data inputs to perform the simulations.
These data could be parameters of the model(s) or boundary con-
ditions, outputs at different time instants, etc., traditionally
obtained through experiments. The word static is intended here
to mean that these data could not be modified during the
simulation.

A new paradigm in the field of applied sciences and engineering
has emerged in the last decade. Dynamic Data-Driven Application
Systems (DDDAS) constitute nowadays one of the most challenging
applications of SBES. By DDDAS we mean a set of techniques that
allow the linkage of simulation tools with measurement devices
for real-time control of simulations and applications. As defined
by the US National Science Foundation, ‘‘DDDAS entails the ability
to dynamically incorporate additional data into an executing appli-

cation, and in reverse, the ability of an application to dynamically
steer the measurement process’’ [37].

The term Dynamic Data-Driven Application System was coined
by Darema in a NSF workshop on the topic in 2000 [36]. The doc-
ument that initially put forth this initiative stated that DDDAS con-
stitute ‘‘application simulations that can dynamically accept and
respond to ‘online’ field data and measurements and/or control
such measurements. This synergistic and symbiotic feedback con-
trol loop among applications, simulations, and measurements is a
novel technical direction that can open new domains in the capa-
bilities of simulations with a high potential pay-off, and create
applications with new and enhanced capabilities. It has the poten-
tial to transform the way science and engineering are done, and
induces a major beneficial impact in the way many functions in
our society are conducted, such as manufacturing, commerce,
transportation, hazard prediction/management, and medicine, to
name a few’’ [14].

The importance of DDDAS in the forthcoming decades can be
noticed from the NSF Blue Ribbon Panel on SBES report [33], that
in 2006 included DDDAS as one of the five core issues or challenges
in the field for the next decade (together with multiscale simula-
tion, model validation and verification, handling large data and
visualization). This panel concluded that ‘‘Dynamic Data-Driven
Application Systems will rewrite the book on the validation and
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verification of computer predictions’’ and that ‘‘research is needed
to effectively use and integrate data-intensive computing systems,
ubiquitous sensors and high-resolution detectors, imaging devices,
and other data-gathering storage and distribution devices, and to
develop methodologies and theoretical frameworks for their inte-
gration into simulation systems’’ [33]. Moreover, the NSF believes
that ‘‘. . .The DDDAS community needs to reach a critical mass both
in terms of numbers of investigators, and in terms of the depth,
breadth and maturity of constituent technologies . . .’’ [37].

A DDDAS includes different constituent blocks:

(1) A set of (possibly) heterogeneous simulation models.
(2) A system to handle data obtained from both static and

dynamic sources.
(3) Algorithms to efficiently predict system behaviour by solv-

ing the models under the restrictions set by the data.
(4) Software infrastructure to integrate the data, model predic-

tions, control algorithms, etc.

Almost a decade after the establishment of the concept, the
importance of the challenge is better appreciated. As can be
noticed, it deals with very different and transversal disciplines:
from simulation techniques, numerical issues, control, modelling,
software engineering, data management and telecommunications,
among others. The three different blocks of interactions concern:
(i) the one between human systems and the simulation, (ii) the
simulation interaction with the physical system and (iii) the simu-
lation and the hardware/ data infrastructure. Physical systems
operate at very different time scales: from 10�20 Hz for cosmolog-
ical systems to 1020 Hz for problems at the atomic scales. Humans,
however, can be considered as a system operating at rates from
3 Hz to 500 Hz in haptic devices for instance to transmit realistic
touch sensations. A crucial aspect of DDDAS is that of real-time
simulation. This means that the simulations must run at the same
time (or faster) than data are collected. While this is not always
true (as in weather forecasting, for instance, where collected data
are usually incorporated to the simulations after long time peri-
ods), most applications require different forms of real-time simula-
tions. In haptic surgery simulators, for instance, the simulation
result, i.e., forces acting on the surgical tool, must be translated
to the peripheral device at a rate of 500 Hz, which is the frequency
of the free hand oscillation. In other applications, such as some
manufacturing processes, the time scales are much bigger, and
therefore real-time simulations can last for seconds or minutes.

As can be noticed from the introduction above, DDDAS can rev-
olutionize the way in which simulation will be done in the next
decades. No longer a single run of a simulation will be considered
as a way of validating a design on the basis of a static data set [33].

While research on DDDAS should involve applications, mathe-
matical and statistical algorithms, measurement systems, and
computer systems software methods, see for instance
[16,17,21,28,29], our work focuses on the development of mathe-
matical and statistical algorithms for the simulation within the
framework of such a system. In brief, we intend to incorporate a
new generation of simulation techniques into the field, allowing
to perform faster simulations, able to cope with uncertainty, mul-
tiscale phenomena, inverse problems and many other features that
will be discussed. This new generation of simulation techniques
has received the name of Proper Generalized Decomposition—
PGD—and has received an increasing level of attention by the SBES
community. PGD was initially introduced for addressing multidi-
mensional models encountered in science and engineering (see
[1,2] and the references therein) and was then extended to address
general computational mechanics models [10]. We are revisiting
the motivation and the key ideas of such technique in the next
sections.

1.1. When the solution of many direct problems is needed

An important issue encountered in DDDAS, related to process
control and optimization, inverse analysis, etc., lies in the necessity
of solving many direct problems. Thus, for example, process opti-
mization implies the definition of a cost function and the search
of optimum process parameters, which minimize the cost function.
In most engineering optimization problems the solution of the
model is the most expensive step. Real-time computations with
zero-order optimization techniques can not be envisioned except
for very particular cases. The computation of sensitivity matrices
and adjoint approaches also hampers fast computations. Moreover,
global minima are only ensured under severe conditions, which are
not (or cannot be) verified in problems of engineering interest.
There are many strategies for updating the set of design parame-
ters and the interested reader can find most of them in books
focusing on optimization procedures. Our interest here is not the
discussion on optimization strategies, but pointing out that stan-
dard optimization strategies need numerous direct solutions of
the problem that represents the process, one solution for each ten-
tative choice of the process parameters, plus those required for
sensitivity.

As we discussed in the previous paragraphs, the solution of the
model is a tricky task that demands important computational
resources and usually implies extremely large computing times.
Usual optimization procedures are inapplicable under real-time
constraints because they need numerous solutions. The same is-
sues are encountered when dealing with inverse analysis in which
material or process parameters are expected to be identified from
numerical simulation, by looking for the unknown parameters
such that the computed fields agree in minute with the ones mea-
sured experimentally. However, some previous references exist on
the treatment of problems that require extensive solution proce-
dures for different parameter values. The interested reader can
consult, for instance [6,7,20].

1.2. Towards generalized parametric modelling

One possibility for solving many problems very fast consists of
using some kind of model order reduction based on the use of
reduced bases [18,34]. In these works authors proved the capabil-
ities of performing real time simulation even using light-comput-
ing devices, as smartphones for example. The tricky point in such
approaches is the construction of such reduced bases and the
way of adapting them when the system explores regions far from
the ones considered in the construction of the reduced model.
Solutions to this issue exist and others are been developed to fulfil
with real time requirements.

Multidimensionality offers an alternative getaway to avoid too
many direct solutions. In our opinion it could represent a new par-
adigm in computational mechanics. For the sake of clarity, the use
of multidimensional modelling in an academic physical problem is
illustrated and motivated.

Imagine for example that we are interested in solving the heat
equation but the material’s thermal conductivity is not known,
because it has a stochastic nature or simply because prior to solve
the thermal model it is necessary to measure it experimentally.
Three possibilities arise: (i) wait to know the conductivity before
solving the heat equation (a conservative solution); (ii) solve the
equation for many values of the conductivity (a sort of Monte Carlo
method); or (iii) solve the heat equation only once for any value of
the conductivity.

Obviously the third alternative is the most appealing one. To
compute this quite general solution it suffices to introduce the con-
ductivity as an extra independent coordinate, taking values in a
certain interval and playing a similar role as standard space and
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