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a b s t r a c t

This article describes a novel approach to modeling and storage of NURBS-based solid objects for Isogeo-
metric Analysis. The proposed method is based on a procedural description of the modeling process. Cre-
ation of geometric objects as well as the steps of the modeling process are formulated as a list of simple
commands. This provides an abstraction from the often times tedious manual specification of control
point locations to create a given geometric object. This operator-based approach, in conjunction with
the existing template-based geometry modeling methods, allows one to create complex and multi-level
adaptive models. To illustrate our method, we construct the geometry of a Vertical Axis Wind Turbine
(VAWT) that is suitable for isogeometric fluid and fluid–structure interaction analysis. A new template
is proposed for modeling VAWTs together with a novel algorithm for constructing wind turbine airfoil
profile B-Spline curves from point data. The resultant model has a compact representation that makes
use of a small number of parameters. A preliminary aerodynamics simulation of a newly constructed
VAWT model in 3D under realistic wind conditions and rotation speed is presented.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction and previous work

Non-uniform rational B-Splines (NURBS) are a common tool in
Computer-Aided Design (CAD), Computer Graphics (CG) and re-
lated fields. They are typically used to describe planar and spatial
curves and surfaces. The underlying representation of curves and
surfaces makes use of control points in conjunction with smooth
spline basis functions (B-Splines or NURBS) defined in a parametric
domain. In the case of curves, the functions depend on a single
parameter and are called univariate splines. In the case of surfaces,
the functions depend on two parameters and are called bi-variate
splines. The order and the degree of continuity of the basis func-
tions employed determine the properties of the resulting geomet-
ric object.

A less common object in the CAD and CG communities is the tri-
variate solid. In this case, the underlying spline basis functions de-
pend on three parametric coordinates and one is able to represent
three-dimensional shapes with parameterized interior (see [34] for
an overview). Such tri-variate representations have gained impor-
tance only in recent years. One of the reasons is its usefulness in
representing heterogeneous data for medical, science, and engi-

neering applications [34]. Another reason is the introduction of Iso-
geometric Analysis (IGA) [26], a computational technology that is
an alternative to the finite element method (FEM), where bi- and
tri-variate representations of CAD geometry are employed directly
in the computational analysis of mathematical models described
by partial differential equations. The relative merits of IGA, its
veracity and its potential are described in a recent book [18] on
the subject.

NURBS are a mature technology: a variety of algorithms exist
for creating and modifying NURBS curves and surfaces. Numerous
software packages provide the means for interactively describing
these free-form objects. This, however, is not the case for NURBS
solids. Such models have to be defined by the user as a list of model
primitives, i.e., control points and knot vectors, which define the
underlying NURBS basis functions. Volumetric NURBS models re-
quire specification of more data than curves or surfaces. As a result,
while the manual definition of tri-variate solid geometries is man-
ageable for small models, it is a tedious and error-prone process for
models of larger size. Furthermore, the lack of appropriate model-
ing tools poses a serious problem when model adaptions arise. The
list of model primitives does not describe the structural logic of the
geometric model, that is, the relations among the model compo-
nents cannot be represented by a list of primitives [23,42]. Hence,
there is no indication which low-level entities have to be modified
in order to obtain a desired high-level shape change.
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In the recent years a number of modeling approaches for NURBS
solids that are suitable for computational analysis were described
in the literature. Most of these aim at extending existing CAD func-
tionality and methods. We briefly summarize them here:

� Surface expansion: There exist several algorithms that create
NURBS surfaces from the combination of single or multiple
NURBS curves. Operations such as sweeping, extrusion or ruling
are a basic tool in computer-aided geometric design (see e.g.,
[38,39]). For surface modification, operators such as ‘‘taper’’,
‘‘twist’’, ‘‘flatten’’, and ‘‘lift’’ have been applied to regions of
NURBS surfaces. These were specified by location, rather than
by requiring the user to indicate subscripts (see [16] for details).
These operations may be extended to allow the creation of
NURBS solids from NURBS surfaces. Some early work was done
in [37] to deform volumetric spline models without having to
move each control point manually. However, the implementa-
tion of such modeling operations may be challenging. For exam-
ple, [1] describes the issues involved in sweeping a cross-
section along a guidance curve, while [34] deals with the chal-
lenges of assigning heterogeneous volumetric attributes to
NURBS solids, and the transfer of these attributes under surface
expansion operations.
� Constructive modeling: One of the fundamental representation

schemes for solid objects is Constructive Solid Geometry
(CSG). Within this scheme a complex body is composed from
basic shape primitives such as spheres, cylinders, cubes, etc.
The shapes are combined using regularized Boolean operations,
which leads to the final geometry [41]. The biggest challenge for
NURBS in this approach is to ensure the correct alignment of the
different regular meshes of the shape primitives. In [36], the
authors developed a Constructive Solid Analysis framework
for CSG using the ideas of the partition of unity [35] and mesh-
less FEM [12].
� Extraction of parametrizations: A common problem in geometric

modeling is to find a parametrization for a given set of discrete
data. Different algorithms that allow to convert discrete data
sets into NURBS curves and surfaces are described in [38]. These
algorithms employ some form of interpolation or approxima-
tion. In [33] the authors describe an approach that allows them
to create a trivariate parametrization from a given set of trian-
gular surface meshes. The surface meshes describe the exterior
boundary of a solid object and give additional information
about the interior layers.
� Template-based modeling: Man-made objects, in particular those

with a technical origin, possess a certain regularity. They may
often be characterized by a handful of parameters. These char-
acteristics may be captured in the form of templates. Templates
may be defined as a pattern of control points and interpolation
functions that describe certain basic shapes, for instance
circular arcs. They may be combined in order to obtain more
complex shapes. In [49] a template-based approach was devel-
oped for IGA of cardiovascular blood flow and fluid–structure
interaction (FSI). Templates of blood vessel branching configu-
rations enabled the authors to construct models of patient-
specific vasculature using NURBS and perform FSI analyses
directly on these models. Templates for Horizontal Axis Wind
Turbine (HAWT) blades and rotors were recently developed in
[8], and employed in the FSI analysis in [9]. We would like to
note that what we call ‘‘templates’’ are versions of what are
called features in the design community. See [31] for a general
discussion and [19] for a discussion of mechanical features for
manufacturing.

In this paper we introduce a novel approach to NURBS solid
modeling and representation for IGA. The method is based on a

bottom-up, or patch-wise concept, where complex models are
composed of relatively simple components. Our method is founded
on the template-based modeling concept and integrates paradigms
such as surface expansion and parametrization extraction. We ex-
tend the template modeling concept by employing an operator-
based representation, which is similar to the concept of generative
or procedural modeling [23,20]. That is, a complex geometrical
model is not described in terms of its final data structures. Instead,
one describes the modeling operations that lead to the final geom-
etry. We adapt this concept in order to describe the evolution of a
NURBS model, starting from a simple initial shape or a collection of
such shapes. The modeling operations and the basic shapes can be
expressed in terms of modeling commands and templates. This re-
sults in a drastic reduction of model size. It furthermore provides a
basis for model adaptions on multiple levels, as all templates and
modeling operations are inherently parametric.

This article is structured as follows: the mathematical founda-
tions of NURBS solids are described in Section 2. Section 3 de-
scribes the details of our modeling approach and gives some
implementation remarks. Section 4 presents the application of
our methodology to the modeling the geometry of Vertical Axis
Wind Turbines (VAWT). The resulting NURBS model may be used
in the isogeometric FSI simulations. We show a preliminary mov-
ing-domain computation of our VAWT design under realistic wind
conditions and rotation speeds. A more detailed study of VAWTs is
planned in the future work. Section 5 presents discussion and con-
clusions, and outlines future research directions.

2. NURBS solids

NURBS-based geometric representations employ a set of para-
metric functions for describing an object. The basic elements for
setting up these functions are the knot vectors. A knot vector is a
collection of real-valued knots, ni, which subdivide a one-dimen-
sional parametric domain X1

B :¼ ½na; nb� � R into elements. For our
purposes we focus on open knot vectors that are always of the form

N :¼ fna; . . . ; na|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

; npþ1; . . . ; nn; nb; . . . ; nb|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

g; ð1Þ

that is, both the lower boundary na and the upper boundary nb are
repeated p + 1 times at their respective position.

Knot vectors are the basis for evaluating B-Spline basis func-
tions, typically using the Cox-De Boor formulas, the details of
which may be found in the standard texts on NURBS or in the
growing number of articles dealing with IGA [26,38,39]. We wish
to stress two details. Firstly, open knot vectors yield B-Spline basis
functions that are interpolatory at na and nb, which greatly simpli-
fies imposition of boundary conditions in simulations. Secondly,
open knot vectors encode in their form the number (n + 1) and de-
gree (p) of the B-Spline basis functions Np

i ðnÞ : X1
B ! ½0;1�, where

i = 0, . . . ,n.
In order to represent solids, trivariate B-Spline functions

Npqr
ijk ðn;g; fÞ : X3

B ! ½0;1� are employed. They may be computed as
tensor products of univariate B-Splines as

Npqr
ijk ðn;g; fÞ ¼ Npqr

ijk ðnÞ ¼ Np
i ðnÞN

q
j gÞN

r
kðfÞ; ð2Þ

where Nq
j ðgÞ and Nr

kðfÞ are computed from knot vectors H and Z,
respectively. The parametric domain X3

B of the trivariate B-Spline
basis functions becomes

X3
B :¼ N�H� Z ¼ ½na; nb� � ½ga;gb� � ½fa; fb�: ð3Þ

We note that the trivariate B-Spline basis functions Npqr
ijk ðnÞ are com-

pletely determined by a set of three open knot vectors N, H, and Z.
Using the basis functions Npqr

ijk ðnÞ we can now define a B-Spline
solid as the set of all points x 2 R3 that result from the mapping
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