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a b s t r a c t

This paper is the first in this series to develop a numerical homogenization method for heterogeneous
media and integrate it with goal-oriented finite element mesh adaptivity. We describe the physical appli-
cation, Step and Flash Imprint Lithography, in brief and present the mathematical ideas and numerical
verification. The method requires the Moore–Penrose pseudoinverse of element stiffness matrices. Algo-
rithms for efficiently computing the pseudoinverse of sparse matrices will be presented in the second
paper.

The purpose of numerical homogenization is to reduce the number of degrees of freedom, find locally
optimal effective material properties, and perform goal-oriented mesh refinement. Traditionally, a finite
element mesh is designed after obtaining material properties in different regions. The mesh has to resolve
material discontinuities and rapid variations in the solution. In our approach, however, we generate a
sequence of coarse meshes (possibly 1-irregular), and homogenize material properties on each coarse
mesh element using a locally posed constrained convex quadratic optimization problem. This upscaling
is done using the Moore–Penrose pseudoinverse of the linearized fine-scale element stiffness matrices,
and a material-independent interpolation operator.

Numerical verification is done using a two dimensional conductivity problem with known analytical
limit. Finally, we present results for two and three dimensional geometries. The results show that this
method uses orders of magnitude fewer degrees of freedom to give fast and approximate solutions of
the original fine-scale problem.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Step and Flash Imprint Lithography (SFIL) is an imprint lithogra-
phy process designed to transfer circuit patterns to fabricate
microchips in low-pressure and room-temperature environments
[1–3]. Photopolymerization is the main process to create polymeric
patterns on a substrate. It is accompanied by densification which
affects the shape of imprinted features [4].

In this research, we are interested in the post-polymerization
step of the SFIL process. The object of interest is a heterogeneous
glassy polymeric structure created on an organic polymer layer
which in turn is on a silicon substrate. The structure is modeled as
monomers interacting with pair-potentials with neighbors in a lat-
tice. An equilibrium configuration is found by minimizing the en-
ergy of the lattice. Numerical solution of such a molecular statics
fine-scale base model is computationally very expensive due to
the problem size, which is on the order of millions of degrees of free-
dom (DOFs). Rapid variation in material properties, ill-conditioning,

nonlinearity, and non-convexity make this problem even more
challenging to solve.

Typical dimensions of the patterns in the structure are much
larger than individual molecules, but the discreteness plays an
important role in modeling of such objects. In the context of SFIL,
an approach for coupling of discrete polymer elasticity models
with continuum hyperelasticity models has been presented in
[5,6].

Our objective is to approximate a nonlinear base model of the
polymeric structure (based on molecular statics) by local numeri-
cal homogenization of fine-scale material properties and use
goal-oriented adaptivity to change the models spatially. Before
presenting the local numerical homogenization method, we give
a brief review and background of multiscale methods and mesh
adaptivity.

1.1. Multiscale methods and numerical homogenization

The desire to capture fundamental or more accurate small-scale
models into large-scale models has given rise to the field of multi-
scale methods [7]. Such methods find the approximate solution on
a coarse mesh but use the fine mesh to construct the relevant

0045-7825/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.06.011

⇑ Corresponding author.
E-mail addresses: chetan@ices.utexas.edu (C. Jhurani), leszek@ices.utexas.edu

(L. Demkowicz).

Comput. Methods Appl. Mech. Engrg. 213–216 (2012) 399–417

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2011.06.011
mailto:chetan@ices.utexas.edu
mailto:leszek@ices.utexas.edu   
http://dx.doi.org/10.1016/j.cma.2011.06.011
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


information. The numerical techniques allow us to avoid the
assumption of periodicity that is typically used in the analytical
techniques of homogenization.

Hughes et al. use concepts of variational multiscale and resid-
ual-free bubbles to resolve the fine-scales [8,9]. Engquist et al.
use wavelet basis to compute effective homogenized operators
and use truncation for a sparse approximation [10,11]. Hou et al.
compute operator-dependent basis functions by solving local aux-
iliary problems [12]. For two-phase flow in porous media, a numer-
ical upscaling technique based on the assumption that net flux
between coarse elements occurs only on the coarse-scale has been
introduced by Arbogast [13]. In [14], Knapek introduced operator-
dependent interpolation in the context of multigrid methods. Feyel
and Chaboche do a micromacro analysis to compute solutions of
multiscale problems without using closed-form macroscopic con-
stitutive equations [15].

Voigt [16] and Reuss [17] were pioneers in analyzing effective
elastic properties of heterogeneous continuum materials. How-
ever, both made completely different assumptions in simplifying
the heterogeneity. Voigt assumed a uniform strain field which
led to an averaging of the elasticity tensor. Reuss assumed a uni-
form stress field instead which resulted in an averaging of the com-
pliance tensor (inverse of the elasticity tensor). Both are imperfect
assumptions. Voigt’s assumption results in statically inadmissible
stress fields and Reuss’s assumption leads to kinematically inad-
missible strain fields [18]. Our method cannot be classified as being
one of these two methods, but it closer to the Reuss’s assumption.
We linearly transform the inverse of the fine scale element stiff-
ness matrix to compute the inverse of the coarse scale element
stiffness matrix. The inverse of the coarse scale element stiffness
matrix is then inverted to assemble the coarse global system. How-
ever, we always maintain the kinematic constraints because the
degrees of freedom are consistent across adjacent elements.

1.2. Mesh adaptivity and error estimation

Critical to the accuracy, reliability and mesh adaptivity in finite
element methods is existence of good a posteriori error estimates.
Such estimates not only provide confidence in the solution on
the current mesh but also indicate elements to be refined further
for an automatic refinement strategy. Use of effective automatic
refinement algorithms is essential to obtain an accurate solution
of problems in complex domains.

Many researchers have contributed to the vast field of a poste-
riori error estimation and mesh refinement. For a comprehensive
introduction and analysis of various methods, we refer to the
monographs by Babuška and Strouboulis [19] and by Oden and
Ainsworth [20].

For many applications, interest is restricted to part of the full
domain or a goal represented by a functional of the solution. Usu-
ally, in the context of linear problems, the goal is a bounded linear
functional on the Hilbert space containing the solution. Many algo-
rithms have been developed for optimizing the mesh for reducing
the error in a given quantity of interest rather than in some energy
norm. Such algorithms provide the basis for the so-called goal-ori-
ented adaptivity. The main tool behind such algorithms is charac-
terization of the error in the goal in terms of the solution of the
adjoint problem (which is driven by the goal). Amongst others, this
approach was taken by Becker and Rannacher [21] and Oden and
Prudhomme [22].

1.3. Overview of this work

We develop and implement a framework for numerical homog-
enization and goal-oriented adaptivity for nonlinear lattice elastic-
ity problems. It is developed with the polymer base model of SFIL

in mind, but is quite general and can be applied to continuum
problems with a given fine mesh that sufficiently resolves the
fine-scale material properties.

The main research contribution lies in mathematical develop-
ment and efficient software implementation of local numerical
homogenization. Mathematical details of the application area
(SFIL) are presented in this paper. Numerical verification and de-
tailed results are also shown. Algorithms for efficiently computing
the Moore–Penrose pseudoinverse of sparse matrices, which form
the core of homogenization, will be the topic of the second one
[23].

We describe the SFIL process and its modeling in Section 2. In
Section 3, we present the local numerical homogenization method.
A coarse mesh is selected first and homogenization is done on each
individual element of the mesh. On each element, the homogeniza-
tion method works with the Moore–Penrose pseudoinverse of the
element stiffness matrix to produce pseudoinverse of the local
homogenized stiffness matrix as the output. The homogenized
stiffness matrices can be assembled in the usual manner and the
resulting system solved to compute the coarse-scale solution.
The work extends the existing goal-oriented h-refinement strategy
[24] to numerical homogenization where coarse-scale and fine-
scale operators are different. The adjoint solutions on coarse and
fine meshes provide a basis of automatic goal-oriented adaptivity.
This gives rise to 1-irregular meshes with hanging nodes. These are
handled using the constrained approximation techniques [25,26].

In Section 4, the homogenization method is verified using a 2-D
chessboard conductivity problem in with a known homogenized
limit [27]. The results provide evidence of the accuracy, robustness
in presence of nonlinearities and mesh adaptivity. The adjoint solu-
tions on coarse and fine meshes provide a basis of automatic goal-
oriented adaptivity [24]. This gives rise to 1-irregular meshes with
hanging nodes. These are handled using the constrained approxi-
mation techniques [25]. We present the details for 2-D and 3-D
geometries in Section 7.

2. Description and modeling of Step and Flash Imprint
Lithography

Step and Flash Imprint Lithography (SFIL) is a viable low-cost
alternative to existing lithography techniques. This technique
was initially developed by the Willson Research Group at The Uni-
versity of Texas at Austin in the late 1990s [2]. It is designed for
fabricating microchips in low-pressure and room-temperature
environments [1–3]. It has enabled imprinting of features smaller
than 20 nm (nm). Moreover, it has the inherent resolution neces-
sary to define sub-10 nm geometries [28]. Roughly speaking, a
template contains ‘‘negative’’ of the desired pattern. If liquid were
to be trapped inside these negative features and polymerized, on
removal of the template, we would obtain a polymer with the ‘‘po-
sitive’’ pattern. Fig. 1 shows the basic idea behind the process and
the resulting geometry. This section describes the process and the
model of elasticity of polymeric lattices created in SFIL. Parameter
estimation for bond potentials is discussed in [29]. The lattice elas-
ticity model is described in detail in [5,6].

2.1. Description of the SFIL process

Multiple separate processes have to be carried out to complete
the pattern transfer. To create a pattern layer, an organic polymer
layer (transfer layer) is spin-coated on a silicon substrate. A low
viscosity, photopolymerizable, organosilicon solution (etch barrier)
is then distributed on the wafer. A transparent template, which has
patterned relief structures, is placed over the coated silicon sub-
strate. This displaces the etch barrier solution which gets trapped
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