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a b s t r a c t

This paper, by means of complex representation of a split quaternion matrix, studies the problems of
right split quaternion eigenvalues and eigenvectors of a split quaternion matrix, and derives algebraic
techniques for the right split quaternion eigenvalues and eigenvectors of the split quaternion matrix in
split quaternionic mechanics.
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1. Introduction

In the study of the relation between complexified classical and
non-Hermitian quantum mechanics, physicians found that there
are links to quaternionic and coquaternionic mechanics. The main
finding is that complexifiedmechanical systemswith real energies
studied extensively in the literature over the past decade can
alternatively be thought of as certain split quaternionic extensions
of the underlying realmechanical systems. This identification leads
to the possibility of employing algebraic techniques of quaternions
and split quaternions to tackle some of the challenging open issues
in complexified classical and quantum mechanics.

Complex (i.e. non-Hermitian) Hamiltonians have long been em-
ployed to describe open quantum systems, decay and scattering
phenomena [1]. Further, since the realisation that complex opera-
tors respecting space–time reflection (PT) symmetry may possess
entirely real spectra [2], there have been considerable research
interests in examining both physical and mathematical properties
of quantum systems described by non-Hermitian Hamiltonians
with real spectra. More recently, the interest in these systems has
increased notably, in part owing to experimental realisations of
the phenomenon of the PT phase transition and other theoretically
predicted effects [3,4].
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Complexified classical mechanics has also been studied in-
tensely both in the context of semiclassical calculations and as
a classical analogue of non-Hermitian quantum mechanics [5–9].
For a classical system, its complex extension typically involves
the use of complex phase-space variables, and the Hamiltonian
in general also becomes complex. For a quantum system, on the
other hand, its complex extension typically involves the use of a
Hamiltonian that is not Hermitian, a fully complexied quantum
system analogous to its classical counterpart, can be formulated,
where state space variables are also complexied [10,11]. There are
two natural ways in which quantum system can be extended into
a fully complex domain [11], where both the Hamiltonian and
the state space are complexied. In short, one is to let state space
variables and Hamiltonian be quaternion valued; the other is to
let them split quaternion valued. The former is related to those
of symmetric quantum system of Finkelstein and others [12,13]
which can be viewed as representing complex extensions of the
underlying real mechanics for real Hermitian quantum systems,
whereas the latter possesses spectral structures similar to those of
PT-symmetric quantum system of Bender and others [7–10] which
can be viewed as representing complex extensions of the underly-
ing real mechanics for real non-Hermitian quantum systems.

The statements above suggest that complexified quantum me-
chanics can alternatively be viewed as a version of quaternionic or
split quaternionic quantummechanics, and PT-symmetric systems
are in fact related to split quaternions, rather than quaternions.
In this connection it is worth remarking that symmetries of split
quaternion are related to the Lorentz group, rather than Euclidean
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group, in the sense that every rotation in the Minkowski three-
space can be expressed in terms of split quaternions. Hence PT
symmetry a priori has more in common with Lorentzian space–
time than Euclidean space–time. It follows that PT symmetric
quantum mechanics is not equivalent to the traditional quater-
nionic quantum theories, instead it is equivalent to a split quater-
nionic quantum mechanics.

A split quaternion (or coquaternion), which was found in 1849
by James Cockle, is in the form of

q = q0 + q1i + q2j + q3k,
i2 = −1, j2 = k2 = 1, ijk = 1,

where q0, q1, q2, q3 are real numbers. One can see easily that ij =

−ji = k, jk = −kj = −i, ki = −ik = j. Denote the sets of
split quaternions and quaternions respectively by Hs and H. The
set Hs of split quaternions is an associative and non-commutative
4-dimensional Clifford algebra, and it contains zero divisors, nilpo-
tent elements and nontrivial idempotents [14–17]. The ring Hs
and the quaternion ring H are two different non-commutative
4-dimensional Clifford algebra, the ring H is a skew-field, and the
ring Hs is not. The structure of ring Hs is more complicated than
that of the ring H.

A split quaternion λ is said to be a right (left) eigenvalue pro-
vided that Aα = αλ(Aα = λα) for nonzero vector α, and α

is said to be an eigenvector to the right (left) eigenvalue λ. The
eigen-problem of quaternion matrices and split quaternion matri-
ces play important roles in the study of theories and numerical
computations of quaternionic and split quaternionic mechanics.
There are a lot of works associated with quaternionic eigenvalue
problem [18–25]. In papers [18,19], we studied the problems
of right eigenvalues and eigenvectors of quaternion matrices by
means of complex representation of a quaternion matrix, derived
algebraic techniques for the right eigenvalues and eigenvectors of
the quaternion matrices in quaternionic quantum mechanics. In
paper [26], the authors discussed the properties of complex eigen-
values of a split quaternion matrix, and gave an extension of Ger-
shgorin theorem. In paper [11], the authors studied the properties
and applications of 2 × 2 split quaternionic Hermitian matrices,
and obtained that the eigenvalues were either real or appeared as
complex conjugate pairs. In general the following problems have
hitherto remained tangential for a split quaternion matrix A in
split quaternionic mechanics.

Problem 1. Does it exists right split quaternion eigenvalues for A?
What is a necessary and sufficient conditions for A to have a right
split quaternion eigenvalue?

Problem 2. How to find all possible right split quaternion eigen-
value and corresponding split quaternion eigenvectors of A?

This paper, by means of complex representation of a split
quaternionmatrix, studies the eigen-problem of right split quater-
nion eigenvalues and corresponding split quaternion eigenvectors
of a split quaternion matrix, and settles down the two problems
above. It not only gives a necessary and sufficient conditions for
A to have a right split quaternion eigenvalue, but also derives
algebraic techniques for the right split quaternion eigenvalues and
corresponding split quaternion eigenvectors of the split quaternion
matrix in split quaternionic mechanics.

Let R be the real number field, C = R⊕ Ri the complex number
field, and Hs = R ⊕ Ri ⊕ Rj ⊕ Rk the split quaternion ring,
where i2 = −1, j2 = k2 = 1, ijk = 1. Fm×n denotes the set of
m × n matrices on a ring F. If q = q0 + q1i + q2j + q3k ∈ Hs,
where q0, q1, q2, q3 ∈ R, then define q = q0 − q1i − q2j − q3k
to be conjugate of q. Define Re(q) = q0, the real part of Im(q) =

q1i + q2j + q3k, the imaginary part of q. The norm |q| of a split

quaternion q is defined as |q| =
√

|qq| =

√
|q20 + q21 − q23 − q24|. q

is said to be a unit split quaternion if its norm is 1. If A ∈ Hm×n
s , let

A = A0 +A1i+A2j+A3k, At ∈ Rm×n define A = A0 −A1i−A2j−A3k
to be conjugate of A. In addition, define other conjugates for a split
quaternion matrix A = A0 + A1i + A2j + A3k ∈ Hm×n

s respectively
to be as follows.

A(12)
= A(21)

= A0 − A1i − A2j + A3k,
A(13)

= A(31)
= A0 − A1i + A2j − A3k,

(1.1)

A(23)
= A(32)

= A0 + A1i − A2j − A3k,
A(123)

= A(321)
= A0 − A1i − A2j − A3k,

(1.2)

the matrix A(st) is called to be (st)-conjugate of the matrix A, s ̸=

t, s, t = 1, 2, 3. Clearly, A(12)
= A(21)

= kAk, A(13)
= A(31)

= jAj,
A(23)

= A(32)
= −iAi, and A(123)

= A(321)
= A. Clearly (A + B)(123) =

A(123)
+B(123), (AB)(123) ̸= A(123)B(123) in general. The (12)-conjugate,

(13)-conjugate and (123)-conjugate are three different generations
of ordinary conjugate of a complexmatrix. It is easy to get following
equations by the definitions above for any A, B ∈ Hm×n

s , C ∈ Hn×p
s ,

(A + B)(st) = A(st)
+ B(st), (AC)(st) = A(st)C (st), (1.3)

in which s ̸= t, s, t = 1, 2, 3.
For A ∈ Cm×m, fA(x) denotes the characteristic polynomial of A.

Lemma 1.1 ([27]). Let A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n. Then the
matrix equation AX − XB = C has a unique solution X ∈ Cm×n if and
only if fA(x) and fB(x) are relatively prime, i.e. (fA(x), fB(x)) = 1, in
other words, fA(B) is a nonsingular matrix.

2. Split quaternions and equivalence classes

Two split quaternions p and q are said to be similar if there
exists a nonsingular split quaternion x such that x−1px = q; this is
written as p ∼ q. Obviously, p and q are similar if and only if there
is a unit split quaternion u such that u−1pu = q, and two similar
split quaternions have the same norm. Clearly,∼ is an equivalence
relation on the split quaternions.We denote by [q] the equivalence
class containing the split quaternion q. The split quaternion q is
called to be a principal element of the equivalence class [q].

Proposition 2.1 ([22]). Let p = p0 + p1i + p2j + p3k and q =

q0+q1i+q2j+q3k be two split quaternions. Then p and q are similar if
and only if p0 = q0 and p21−p22−p23 = q21−q22−q23, i.e.Re(q) = Re(q),
|Im(p)| = |Im(q)|.

For any split quaternion q = q0 + q1i + q2j + q3k = a + bj,
a = q0 + q1i, b = q2 + q3i, q0, q1, q2, q3 ∈ R, the complex
representation of q is defined [14] to be

qC =

[
a b
b a

]
∈ C2×2 (2.1)

and by [14], for any two split quaternions p and q, we have that
(p+ q)C = pC + qC , (pq)C = pCqC . The characteristic polynomial of
matrix qC is fqC (x) = x2 − (a+ a)x+ aa− bb. It is easy to know that
the two complex eigenvalues of the complex representation qC are

λ1 = q0 +

√
q22 + q23 − q21, λ2 = q0 −

√
q22 + q23 − q21.

Case 1: If q21 > q22 + q23, the two different imaginary eigenvalues

are λ = q0+

√
q21 − q22 − q23i, λ = q0−

√
q21 − q22 − q23i, and clearly

there exists a nonsingular complexmatrix T1 such that T1 = xC1 , and

qCT1 = T1

[
λ 0
0 λ

]
⇔ qx1 = x1λ, (2.2)



Download English Version:

https://daneshyari.com/en/article/6919018

Download Persian Version:

https://daneshyari.com/article/6919018

Daneshyari.com

https://daneshyari.com/en/article/6919018
https://daneshyari.com/article/6919018
https://daneshyari.com

