
Please cite this article in press as: N. Auer, et al., Magnus integrators on multicore CPUs and GPUs, Computer Physics Communications (2018),
https://doi.org/10.1016/j.cpc.2018.02.019.

Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Magnus integrators on multicore CPUs and GPUs
N. Auer, L. Einkemmer *, P. Kandolf, A. Ostermann
Department of Mathematics, University of Innsbruck, Austria

a r t i c l e i n f o

Article history:
Received 20 September 2017
Received in revised form 16 February 2018
Accepted 20 February 2018
Available online xxxx

Keywords:
Magnus integrators
Graphic processing unit
Parallelization
Commutator-free Magnus integrators
Performance comparison
Heisenberg model

a b s t r a c t

In the present paper we consider numerical methods to solve the discrete Schrödinger equation with
a time dependent Hamiltonian (motivated by problems encountered in the study of spin systems). We
will consider both short-range interactions, which lead to evolution equations involving sparse matrices,
and long-range interactions, which lead to dense matrices. Both of these settings show very different
computational characteristics. We use Magnus integrators for time integration and employ a framework
based on Leja interpolation to compute the resulting action of the matrix exponential. We consider both
traditional Magnus integrators (which are extensively used for these types of problems in the literature)
as well as the recently developed commutator-free Magnus integrators and implement them on modern
CPU and GPU (graphics processing unit) based systems.

We find that GPUs can yield a significant speed-up (up to a factor of 10 in the dense case) for these
types of problems. In the sparse case GPUs are only advantageous for large problem sizes and the achieved
speed-ups are more modest. In most cases the commutator-free variant is superior but especially on the
GPU this advantage is rather small. In fact, none of the advantage of commutator-free methods on GPUs
(and on multi-core CPUs) is due to the elimination of commutators. This has important consequences for
the design of more efficient numerical methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

To numerically solve the Schrödinger equation with a time-
dependent Hamiltonian

i
dψ
dt

= H(t)ψ(t), ψ(0) = ψ0, (1)

is a problem of significant interest in various fields of quantum
mechanics. Applications range from discrete spin systems to (con-
tinuous) models of atom–laser interaction. Therefore, it is impor-
tant to have both good numerical algorithms as well as an efficient
implementation on state of the art computer hardware of these
algorithms at one’s disposal.

Magnus integrators are used inmany such applications (see, for
example, [1–5]). The implementation of these Magnus integrators
(which constitute a subclass of exponential integrators; for more
details see [2,6,7]) requires the computation of the action ofmatrix
exponentials in an efficient and stablemanner. For some problems,
e.g. if the continuous Schrödinger equation is used to model atom-
laser interaction, this can be done using fast Fourier techniques.
However, for many other interesting problems this is not possible.
For the latter case a number of approaches have been proposed
in the literature (see, for example, [6,8–12]). Most of them are

* Corresponding author.
E-mail address: lukas.einkemmer@uibk.ac.at (L. Einkemmer).

based on polynomial interpolation. In [11,13] it was shown that
interpolation at Leja points is a very efficient way of performing
such an approximation for the Schrödinger equation. This algo-
rithm interpolates the exponential function and thus reduces the
task of computing the action of a matrix exponential to the task
of computing a sequence of matrix–vector products. Let us also
note that, in addition to the Schrödinger equation considered in
this paper, Magnus integrators have been successfully applied to
many related problems.

In addition to the matrix exponential, traditional Magnus in-
tegrators of higher order require the computation of matrix com-
mutators (see, for example, [2,6,14]). In time dependent problems
(as those considered here) these matrix commutators have to be
computed once every time step. Thus, especially for large problem
sizes the corresponding cost can outweigh the cost of the matrix–
vector products. Recently, commutator-free Magnus integrators
have been developed [15,16]. They eliminate commutators but
usually require additional matrix–vector products.

Due to the trend towards CPUs with more and more cores
as well as the trend towards GPUs, providing an efficient imple-
mentation of numerical algorithms on modern multi-core CPUs
and GPUs is of great practical importance. Some preliminary work
on implementing exponential integrators [17] and matrix func-
tions [12] has been conducted on GPUs (with generally promising
results). The purpose of the present work is to investigate the

https://doi.org/10.1016/j.cpc.2018.02.019
0010-4655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2018.02.019
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:lukas.einkemmer@uibk.ac.at
https://doi.org/10.1016/j.cpc.2018.02.019

Please cite this article in press as: N. Auer, et al., Magnus integrators on multicore CPUs and GPUs, Computer Physics Communications (2018),
https://doi.org/10.1016/j.cpc.2018.02.019.

2 N. Auer et al. / Computer Physics Communications () –

performance of both commutator-free and traditional Magnus in-
tegrators. This is done in the context of multi-core CPUs and GPUs.
Although from a computational complexity point of view, one
might conjecture that computing the commutators will dominate
the total computational cost, this is not necessarily true in an actual
implementation. In particular, on GPUs matrix–matrix products
(necessary for computing the commutators) can operate close to
peak efficiency while this is usually not the case for matrix–vector
products. The comparison will be performed in the context of both
short-range interactions (which lead to sparse Hamiltonians H(t))
and long-range interactions (which lead to dense Hamiltonians
H(t)) to ascertain in which situations GPUs result in a significant
gain in performance.

This paper is based, in part, on the thesis [18] and is structured
as follows. In Section 2 we provide an introduction to Magnus
integrators and specify the numerical methods used in the subse-
quent sections. Section 3 then details the numerical approximation
and the implementation. The numerical results are presented and
discussed in Section 4. Finally, we conclude in Section 5.

2. Magnus integrators

The solution of the linear differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0, (2)

can be expressed as

Y (t) = exp (Ω(t)) Y0, (3)

where the difficulty lies in finding a suitable matrix Ω(t). In [19]
Magnus used the ansatz of differentiating (3) to find an expression
forΩ(t). This results in

Y ′(t) =
d
dt

exp(Ω(t))Y0 = dexpΩ(t)(Ω
′(t)) exp(Ω(t))Y0, (4)

where the operator dexp is defined as

dexpΩ (C) =

∞∑
k=0

1
(k + 1)!

adk
Ω (C) (5)

see [7]. Here the operator adk
Ω (C) is the iterated commutator and

recursively defined as

adj
Ω (C) =

[
Ω, adj−1

Ω (C)
]
, j ≥ 1,

and ad0
Ω (C) = C . Comparing (2) and (4) leads to

A(t) = dexpΩ(t)(Ω
′(t)), Ω(0) = 0. (6)

By applying the inverse of the derivative of the matrix exponential
we obtain a differential equation forΩ . In fact, when ∥Ω(t)∥ < π

the operator dexpΩ(t) is invertible and has the convergent series
representation

dexp−1
Ω(t)(A(t)) =

∞∑
k=0

βk

k!
adk

Ω(t)(A(t)),

where the coefficients βk denote the Bernoulli numbers. As a result
we obtain an explicit differential equation forΩ(t) as

Ω ′(t) = dexp−1
Ω(t)(A(t))

= A(t) −
1
2
[Ω(t), A(t)] +

1
12

[Ω(t), [Ω(t), A(t)]] + · · · .
(7)

Eq. (7) can be integrated by Picard iteration and this leads to the
so-calledMagnus expansion,

Ω(t) =

∫ t

0
A(t1)dt1 −

1
2

∫ t

0

[∫ t1

0
A(t2)dt2, A(t1)

]
dt1

+
1
4

∫ t

0

[∫ t1

0

[∫ t2

0
A(t3)dt3, A(t2)

]
dt2, A(t1)

]
dt1

+
1
12

∫ t

0

[∫ t1

0
A(t2)dt2,

[∫ t1

0
A(t2)dt2, A(t1)

]]
dt1 + · · · .

(8)

To derive numerical methods from the Magnus expansion we
assume a constant time step size τ and thus the solution after one
time step is

Y (tn + τ) = exp(Ω(tn + τ))Y (tn), (9)

resulting in the numerical scheme

Yn+1 = exp(Ωn)Yn, (10)

for a suitable approximationΩn ofΩ(tn+τ). Oneway of deriving a
formula forΩn is to approximate the integrals in (8) by quadrature
rules.

In the following we will introduce the three traditional Magnus
integrators that are used for the numerical experiments in Sec-
tion 4.

Method 1 (M2). The first example is the simplest method, which
is obtained by truncating the series (8) after the first term and
approximating the integral by the midpoint rule. This yields

Ωn(τ) = τA
(
tn +

τ

2

)
as an approximation of Ω(tn + τ). The corresponding numerical
scheme is the exponential midpoint rule

Yn+1 = exp
(
τA
(
tn +

τ

2

))
Yn,

which is of order two.

Method 2 (M4). The second example is a scheme of order four.
The Magnus series (8) is truncated after the second term and the
integrals are approximated by the two-stageGauss quadrature rule
with weights b1 = b2 =

1
2 and nodes c1 =

1
2 −

√
3
6 , c2 =

1
2 +

√
3
6 .

We obtain

Yn+1 = exp

(
τ

2
(A1 + A2)+

√
3τ 2

12
[A2, A1]

)
Yn,

where A1 = A(tn + c1τ) and A2 = A(tn + c2τ).

Method 3 (M6). As a third example, we consider the following
scheme of order six:

Yn+1 = exp
(
B1 +

1
2
B3

+
1

240

[
−20B1 − B3 + [B1, B2], B2

−
1
60

[
B1, 2B3 + [B1, B2]

]])
Yn,

where Ai = A (tn + ciτ) for

c1 =
1
2

−

√
15
10

, c2 =
1
2
, c3 =

1
2

+

√
15
10

,

and

B1 = τA2, B2 =

√
15
3
τ (A3 − A1), B3 =

10
3
τ (A3 − 2A2 + A1).

Download English Version:

https://daneshyari.com/en/article/6919049

Download Persian Version:

https://daneshyari.com/article/6919049

Daneshyari.com

https://daneshyari.com/en/article/6919049
https://daneshyari.com/article/6919049
https://daneshyari.com

