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a b s t r a c t

In this paper, different confinement potential approaches are considered in the simulation of size effects
on the optical response of silver spheres with radii at the few nanometer scale. By numerically obtaining
dielectric functions fromdifferent sets of eigenenergies and eigenstates, we simulate the absorption spec-
trum and the field enhancement factor for nanoparticles of various sizes, within a quantum framework
for both infinite and finite potentials. The simulations show significant dependence on the sphere radius
of the dipolar surface plasmon resonance, as a direct consequence of energy discretization associated to
the strong confinement experienced by conduction electrons in small nanospheres. Considerable reliance
of the calculated optical features on the chosen wave functions and transition energies is evidenced, so
that discrepancies in the plasmon resonance frequencies obtainedwith the three studiedmodels reach up
to above 30%. Our results are in agreement with reported measurements and shade light on the puzzling
shift of the plasmon resonance in metallic nanospheres.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, metallic nanoparticles have drawn attention
because of their boundary-located excitations originated fromcon-
duction electrons, so-called Localized Surface Plasmon Resonances
(LSPRs) [1–4]. Those LSPRs are widely understood in terms of
collective oscillations of the conduction electron gas, and their
frequencies typically lie in the terahertz range [5–7].

Considerable experimental and theoretical efforts in this energy
range have been made to fully understand the physics under-
lying the optical response of those structures since applications
encompass diverse fields such as cancer therapy [8], nanophotonic
devices [9–11], biosensing [12], and catalysis [13,14], among oth-
ers [15–17].

Nowadays, light absorption and scattering are well-known to
depend on the material, size and shape of the nanoparticles, be-
cause of the increment of the surface to volume ratio [18–21].
However, experimental difficulties in classifying and isolating such
small structures on the one hand, and the computationally de-
manding atomistic calculations in this regime where the number
of atoms is at the order of 102–103, on the other hand, make the
characterization of that dependence a challenging problem.
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Regarding the size dependence of the LSPRs in metallic
nanospheres, Scholl et al. reported few years ago a strongly fluc-
tuating behavior in the 1–5 nm radius range, as observed by
using Electron Energy-Loss Spectroscopy (EELS) [22]. That unex-
pected result was later challenged by H. Haberland [23], and Kisma
et al. [24], by basically arguing that the asymptotic regime (where
quantum confinement effects start being negligible) is valid for
diameters as low as 2 nm or less.

In this work, we perform a computationally inexpensive
method to study the optical response of silver nanoparticles in
this controversial size range, articulating classical electrodynamics
(pertinent because of the very high number of photons involved in
the related experimental set-ups), with a quantum treatment of
the conduction electrons.

We calculate dielectric functions under three different ap-
proaches for the confining potential representing the nanospheres.
Significant quantitative differences among the optical responses
obtained from those approaches are observed, although the results
from all three models are found qualitatively consistent with the
available experimental measurements.

The paper is structured as follows: In the first part, the the-
oretical framework underlying the calculations is provided. In
the second part, we present the numerical simulation results
and a discussion. Concluding remarks are drawn at the last
part.
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2. Theoretical framework

We carry out the simulations in two fundamental stages: first,
we obtain the dielectric function for each of the confinement
models, and then we calculate two physical observables (absorp-
tion cross section and field enhancement), associated to each of
those potentials.

2.1. Dielectric function

When a charge carrier is trapped in a region of size at the
order of the corresponding de Broglie’s wavelength (nanometric
scales for conventional materials), values of energy allowed for
that particle are discrete and spectral continuity cannot be con-
sidered anymore [25,26]. This is the case for conduction electrons
in metallic nanospheres. That makes any classical model used in
describing the electron gas response to exciting radiation, to fail at
some point under reduction of the metal size. However, what that
limit is, persists as a matter of debate [22,24].

Experimentally, contrastive behaviors between the 10–100 nm
and the 1–10 nm regimes have been reported [22,27,28]. However,
independent computational studies in that later regime are scarce
because it is simultaneously too big for atomistic calculations [24],
and too small for a continuous classical modeling [29].

Free electron approaches as the Drude and the hydrodynam-
ical models, which considers the valence electrons as classical
particles, are the most widely used to obtain the dielectric func-
tion of metal nanoparticles [30–35]. However, a quantum model
seems more appropriate for studying electrons in nanometric
structures [29,36].

In this study,weuse a dielectric function first introduced by Cini
and Ascarelli [37], that considers the charge carriers as quantum
particles subject to spatial trapping. Accordingly, the dielectric
function of a single metallic nanoparticle under the influence of an
electromagnetic wave with frequency ω is given by

ϵ(ω) = ϵ∞ +
ω2

p

N

∑
i,f

sif (Fi − Ff )
ω2

if − ω2 − iωγif
, (1)

where ϵ∞ is the interband contribution of core electrons, ωp =(
4πne2
m∗

)(1/2)
is the bulk plasmon frequency, N is the total number

of conduction electrons (in silver, the same as the number of atoms
in the nanoparticle), andωif and γif are respectively, the frequency
and damping for a transition from an initial state i to a final state
f . Temperature dependence is included through Fi and Ff which
are the Fermi–Dirac distribution values for the initial and final
states [27]. The oscillator strength for the transition between states
|i⟩ and |f ⟩ is defined as

sif =
2m0ωif

h̄
|⟨f |z|i⟩|2, (2)

where |⟨f |z|i⟩| is the corresponding transition dipole moment,
under z-linearly polarized incident light [38].

Fig. 1(a) presents a schematic diagram of the excitation pro-
cess and the corresponding stimulated transitions between single
particle populated and unoccupied discrete energy states. This
model neglects the correlation effects, which in the considered
size regime are expected to exist but not to dominate. Hence, the
Schrödinger equation for the electron conducting gas is solved in
the non-interacting approach, i.e. in the one electron picture.

Since the eigenenergies and eigenstates of the electron are
required for the calculation of the dielectric function, its particular
features are expected to depend significantly on the potential used
to model the carrier confinement. Then, details of the different
cases studied in these calculations are presented in the next sub-
section.

2.2. Spherical confinement

Atomistic calculations in small silver clusters show that their
shapes are well described as icosahedra or decahedra [39]. How-
ever as the particle size increases, their geometries exhibit more
facets, ultimately resembling spheres [40]. According to Figure 3 in
Ref. [22], for a radius larger than 1 nm, the spherical approximation
fits well the nanoparticle shape.

In this work, the dielectric functions for the various studied
sizes are obtained within three different approaches for the spher-
ical confining potential, namely: (A) infinite confinement with
asymptotic eigenenergies and wave functions, (B) infinite confine-
ment with exact eigenenergies and wave functions, and (C) finite
confinement with numerical eigenenergies. The first two models
share the infiniteness of the potential barriermodeling the particle
boundary, while the last two share the accuracy in the energy
values.

2.2.1. Infinite confinement
The hard-wall spherical well is one of the few potentials with

an exact known solution. Hence, given the shape of the nanos-
tructures under study, plus the assumption of an absolutely im-
penetrable barrier, the wave functions and allowed energies of a
conduction electron of effective mass m∗ confined in a particle of
radius R, are, respectively,

ψn,l,m(r, θ, φ) =
1

|jl+1(αnl)|

√
2
R3 jl

(αnl

R
r
)
Ym
l (θ, φ) (3)

and

En,l =
h̄2α2

ln

2m∗R2 , (4)

where jl represents the lth spherical Bessel functions, Ym
l the stan-

dard spherical harmonics, and αnl the nth zero of jl [41].
Thus, the eigenenergies and eigenfunctions of each electron in

the non-interacting conduction gas are in principle fully deter-
mined, so that the necessary oscillator strengths and transition
energies for the dielectric function can be obtained. However,
because there is not a recurrent relation between zeros of spherical
Bessel function with different l, the calculation results at last in a
numerical problem.

As proposed in Ref. [22], the asymptotic approximation that
provides wave functions and energies in a compact form, can
be used to simplify the calculations. Within such an approxima-
tion [42], the spherical Bessel functions appearing in Eq. (3) and
the eigenenergies in Eq. (4) are correspondingly reduced to

jl(x) ≈
1
x
cos

[
x −

π

2
(l + 1)

]
(5)

and

En,l =
h̄2

2m∗R2

[
π

(
n +

l
2

+ 1
)]2

. (6)

Using the approximation given by Eqs. (5) and (6), straightfor-
ward calculation of the dielectric function can be carried out at
a minimum computational cost. Nevertheless, a price is paid in
accuracy because these expressions are only suitable for small l and
x ≫ l2/2 + l [41] [model (A)], as can be seen in Table 1, where
we present a comparison between energies given by Eq. (4) with
the corresponding ones from Eq. (6) for a nanoparticle of radius
R = 1 nm. Complete agreement is observed for l = 0, whereas a
noticeable overestimation by the approximation becomes signifi-
cant as l increases.

Fig. 1(b) shows jl(αlnr/R) and its asymptotic approximation
[Eq. (5) into Eq. (3)], as functions of the normalized radius for
different values of l (n = 1). It is worth to note that for l = 0 both
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