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a b s t r a c t

At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation
this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that
envelops the discharge as closely as possible. However, the development of the discharge is driven by
electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions
imposed to the electrostatic potential on the external boundary have a strong effect on the discharge.Most
numerical codes circumvent this problem by either using a wide computational domain or by calculating
the boundary conditions by integrating the Green’s function of an infinite domain. Here we describe an
accurate and efficient method to impose free boundary conditions in the radial direction for an elongated
electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we
apply the method to solve Poisson’s equation in cylindrical coordinates with free boundary conditions in
both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges
in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation
volume to be bounded by two electrodes.
Program summary
Program Title: poisson_sparse_fft.py
Program Files doi: http://dx.doi.org/10.17632/x7f6czrnsh.1
Licensing provisions: CC By 4.0
Programming language: Python
Nature of problem: Electric discharges are typically elongated and their optimal computational domain has
a large aspect ratio. However, the electrostatic interactions within the discharge volume may be affected
by the boundary conditions imposed to the Poisson equation. Computing these boundary conditions using
a direct integration of Green’s function involves either heavy computations or a loss of accuracy.
Solution method:We use a Domain DecompositionMethod to efficiently impose free boundary conditions
to the Poisson equation. This code provides a stand-alone example implementation.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Despite their prevalence in industry and in nature, electric
discharges still hold many unknowns. For example, we do not
yet understand precisely how a lightning channel starts, how it
advances in its way to the ground or how exactly are bursts of
X-rays produced as it progresses [1]. This is partly due to the short
time and length scales involved in such processeswhich, combined
with their jittery behavior, prevents the use of many diagnostic
techniques. Due to these limitations, much of what we know about
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electric discharges comes from computer models which, at least
within a simulation, are predictable and reveal arbitrarily small
scales.

Consider streamer simulations. Streamers are thin filaments of
ionized air that precedemost electric discharges in long gaps at at-
mospheric pressure. The main challenge for simulating streamers
is the wide separation between length scales: whereas the total
length of the streamer channel at atmospheric pressure ranges
from about one to some tens of centimeters, the ionization of
air molecules is mostly confined to a layer thinner than one mil-
limeter. Despite this difficulty, there are many numerical codes
that explain most of the observed properties of streamers [2–7].
In the past decades these models have gradually improved and
successfully overcome many of the challenges posed by streamer
physics. However, they are still computationally intensive and
often require days of runtime to produce meaningful simulations.
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In this work we look at one of the problems behind these
long running times: the large aspect ratio of a single-channel dis-
charge. Whereas the width of an atmospheric-pressure streamer
is at most about one centimeter, its length spans many times
this extension. In order to minimize the amount of work per-
formed in a simulation, one strives to adapt the computational
domain to the dimensions of the streamer, which means using
a narrow cylindrical domain with a diameter only slightly larger
than the streamer width. However, in such a narrow domain the
electrostatic interaction between separate points in the channel
is strongly affected by the boundary conditions imposed on the
electric potential at the outer boundaries.

One approach to avoid this artifact while keeping a narrow
domain around the streamer is to calculate the boundary values
of the potential by direct integration of the electrostatic Green’s
function in free space [3,8–11]. These values are then imposed
as inhomogeneous Dirichlet boundary conditions in the solution
of the Poisson equation. In a cartesian grid with M cells in the
radial direction and N cells in the axial direction the direct in-
tegration of the Green’s function at each of the N nodes in the
external boundary requires aboutMN2 operations. Since the work
employed by fast Poisson solvers scales as MN log(MN) (MN for
multigrid solvers), the computation of boundary values by direct
integration may easily dominate the work employed in the elec-
trostatic calculations. This is mitigated in part by using a coarse-
grained charge distribution in the integration. However, in that
case there is a tradeoff between the degree of coarsening and the
minimal radial extension of the domain required for a tolerable
error.

Beyond this common approach used to solve Poisson’s equation
in electric discharges, some other methods have been developed.
A family of these methods has been built upon the idea of the
decoupling of local and far-field effects [12] and the computation
of the boundary potential by means of a potential generated by a
set of screening charges located in the outer surface of the com-
putational domain [13]. Based on these two methods mentioned
above, reference [14] uses a domain decomposition approach to
exploit parallel computing capabilities; first, Poisson’s equation
subject to unbounded boundary conditions is solved in a set of
disjoint patches. As a second step a coarse-grid representation of
the space charge is obtained and Poisson’s equation is again solved
in a global coarse-grid whose solution is used to communicate far-
field effects to local patches. Finally, Poisson’s equation is solved in
a fine grid using boundary conditions computed from the coarse-
grid solution corrected with local field information.

A different family ofmethods uses the convolutionwith Green’s
function subject to free boundary conditions. They manage the
singular behavior of Green’s function by either regularizing it [15],
or by replacing the singular component to the integrand of the
convolution by an analytical contribution [16]. These methods
have achieved an order of convergence greater than two.

Herewe adapt to the cylindrical geometry of electric discharges
the domain-decomposition method described by Anderson [17]
(see also [18] for a review of similar techniques). As we discuss
below, this method requires two calls to the Poisson solver but
otherwise the leading term in its algorithmic complexity follows
the scaling of the Poisson solver itself. Therefore for large grid
sizes our approach is more efficient than the direct integration
method. Furthermore, as we do not reduce the resolution, we do
not introduce any numerical error in addition to the discretization
error of the Poisson equation. We believe that the method we
present is simple enough that it can be easily implemented on top
of any existing streamer simulation code. To aid in this task we
provide a standalone example in Python.

Some applications may also require free boundary conditions
for the z-direction: for example, when the discharge develops

Fig. 1. Geometry of the discharge considered in this work. An elongated channel
propagates between two conducting electrodes. The space between these elec-
trodes, Ω is divided into two domains: the inner domain Ω1 is our computational
domain and contains all the space charge. The outer domainΩ2 extends indefinitely
outwards from the external boundary ofΩ1 and does not contain any space charge.
The cylindrical surface Γ is the common boundary between Ω1 and Ω2 .

far from the electrodes. In those cases one may also reduce the
computational domain in the longitudinal direction while the core
of the simulation remains inside the computational domain. We
have considered this topic of interest in Appendix Awherewe have
applied the domain decomposition method to obtain free bound-
ary conditions also in the longitudinal direction. This extension
requires an extra solution of Poisson’s equation.

Note that streamers are not the only type of discharge that
typically exhibits a large aspect ratio and that therefore our scheme
is also applicable to other processes such as leaders and arcs.

2. Description of the method

2.1. Domain decomposition

The most convenient decomposition of the domain strongly
depends on the problem at hand. The decomposition we present
here is suitable for elongated discharges and probably some other
applications but the procedure and the highlighted ideas are not
restricted to this particular scheme.

We consider the geometry sketched in Fig. 1, where an elon-
gated, cylindrically symmetrical streamer propagates between
two planar electrodes. With minimal changes, our scheme can
be extended to more complex geometries commonly employed
in streamer simulations, such as protrusion–plane, protrusion–
protrusion and sphere–plane. The electrostatic potentialφ satisfies
the Poisson equation with appropriate boundary conditions:

∆φ = f in Ω,

φ = g on ∂Ω,
(1)

where f = −q/ϵ0, with q being the charge density and ϵ0 the
vacuum permittivity. In principle an arbitrary boundary condition,
here denoted by g , can be applied to the upper and lower elec-
trodes. However, to simplify our discussion we limit ourselves to
the most common case where g = 0, meaning φ = 0 at z = 0
and z = L (to impose a potential difference V between the two
electrodes we simply add φinhom = zV/L to the solution of the
homogeneous problem). The domain Ω is the space between the
two electrodes, formally defined as

Ω =
{
x ≡ (ρ, θ, z) ∈ R3/0 ≤ ρ, 0 ≤ θ < 2π, 0 ≤ z ≤ L

}
. (2)



Download English Version:

https://daneshyari.com/en/article/6919114

Download Persian Version:

https://daneshyari.com/article/6919114

Daneshyari.com

https://daneshyari.com/en/article/6919114
https://daneshyari.com/article/6919114
https://daneshyari.com

