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a b s t r a c t

We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models,
including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The
observables that can be computed using EDLib are single particle Green’s functions and spin–spin
correlation functions. This code provides three different types of Hamiltonian matrix storage that can
be chosen based on the model.
Program summary
Program Title: EDLib
Program Files doi: http://dx.doi.org/10.17632/633698b4g2.1
Licensing provisions:MIT
Programming language: C++, MPI
External routines: ARPACK-NG, ALPSCore library (Gaenko et al., 2016)
Nature of problem: The finite Hubbard and Anderson models play an essential role in the description of
strongly correlated many-particle systems. These models consist of a small number of localized orbitals
with Coulomb interaction between electrons and (in case of the Anderson model) non-interacting bath
energy levels. The finite Hubbard cluster can be used to study molecular magnets, such as Mn12, Fe4,
Mn4, and V15, which are currently of interest due to their potential for use in novel technologies such
as molecular electronics, solar energy harvesting, thermoelectrics, sensing, and other applications (Sakon
et al., 2004; Accorsi et al., 2006; Friedman et al., 1996) [1–3]. The Anderson model can be used to study
impurities adsorbed on surfaces (Iskakov et al., 2015) [4] and appears as an impuritymodel in theDynamic
Mean Field Theory (Georges et al., 1996) [5].
Solution method: The OpenMP and MPI parallelized versions of the finite temperature Lanczos diagonal-
ization method are used to diagonalize Hamiltonian matrix and to compute observables.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Further progress in material science is connected with the development of appropriate theoretical concepts and methods to treat
realistic modernmaterials and devices [1–3] taking their atomic structure, chemical composition, electronic andmagnetic properties fully
into account. Two of the basic quantummodels for systems with strong electron–electron correlations are the Hubbard model [6] and the
Anderson impurity model [7], which can be used to simulate lattice problems or an impurity in metal respectively.

At themoment, there are a number ofwell-developednumerical techniques one canuse to solve these quantumelectronmodels such as
continuous-time quantumMonte-Carlomethod [8]; numerical renormalization group [9]; densitymatrix renormalization group [10]; and
configuration interaction methods [11]. For instance, many interesting and promising results were obtained by using QMC-type methods
such as continuous-time quantumMonte Carlo method [12]. Since the main computational task is a sampling of a complex integral, these
methods are ideally suited for parallelization. However, there is a fundamental problem of the QMC solvers called the sign problem, which
can occur for models with a non-diagonal Coulomb interaction matrix, lattice problem away from half-filling or when the simulation
temperature is rather low [13].
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Fig. 1. Block structure of the Sz-symmetric model Hamiltonian matrix.

Alternatively, truncating the infinite Hilbert space by solving a finite lattice problem or by an infinite bath discretization with a finite
set of energy levels allows one to use exact diagonalization techniques to treat the Anderson Impurity Hamiltonian. Such a method
allows to diagonalize the electronic Hamiltonian for different geometries of lattice cluster or with different forms of the on-site Coulomb
matrix [14,15]. Another advantage of the exact diagonalization method is that it provides a natural way to calculate real-frequency
correlation functions such as one- and two-particle Green’s functions at finite temperatures.

In this work, we present the parallel Exact diagonalization library for solving the eigenvalue problem of the quantum electron models
on distributed-memory and shared memory computing systems.

2. Exact diagonalization of finite quantum electron models

The Hamiltonian of themany quantum electronmodels can be expressed as the sum of local (diagonal) term and non-diagonal hopping
term as follows:

H = Hloc + Hhop. (1)

For example in case of Hubbard model [6] Hloc =
∑

iUini↑ni↓ −
∑

iσ µiniσ and Hhop =
∑

⟨i,j⟩σ tijc
†
iσ cjσ , where Ui is Coulomb potential on

site i; µi — chemical potential on site i; tij — hopping integral between sites i, j. c(†)iσ — annihilation (creation) operator of electron with
spin direction σ on ith site. niσ = c†

iσ ciσ — occupation number, number of electrons on the site.
The first step of exact diagonalization algorithm is to represent a Hamiltonian operator (1) as a matrix. Despite the fact that for most

quantumelectronmodels thismatrix is very sparse (99% ofmatrix elements being zeros) the dimension still grows exponentiallyM = 22Ns

in occupation number space |n1↑, . . . , nNs↑ | n1↓, . . . , nNs↓⟩, where Ns is the number of electron levels in the studied quantum electron
model. The exponential growth of basis size puts serious restriction on the problem size.

And to partially overcome this problem the symmetry properties of the particular Hamiltonian should be used. For example, for the
Hubbard model there are particle and spin conservations and the matrix assumes block-diagonal form of (Ns + 1)2 blocks – so called
sectors – of much smaller dimensionMn↑n↓

= C
n↑

Ns
· C

n↓

Ns
for a fixed total occupancy for each spin n↑ =

∑Ns
i=1n̂i↑, n↓ =

∑Ns
i=1n̂i↓, where Ck

n is
the number of combinations of k from n elements, and Ns is the number of sites in the finite cluster. These sectors are linearly independent
and can be diagonalized separately (see Fig. 1). Despite the fact that the dimension of the largest sector in general cases is smaller than the
dimension of the full Hamiltonian matrix by an order of magnitude and matrix sparsity (99% of the elements are zeros for both matrices),
the memory requirements still remain high enough to cause difficulties [16] and various high-performance techniques should be applied.

2.1. Exact diagonalization of the single multi-orbital impurity Anderson model

The multi-orbital impurity Anderson model can be written in the following general form:

H =

∑
pσ

ϵpc+

pσ cpσ +

∑
iσ

(ϵi − µ)niσ +

∑
ipσ

(Vipd+

iσ cpσ + H.c.) +
1
2

∑
ijkl
σσ ′

Uijkld+

iσd
+

jσ ′dlσ ′dkσ . (2)

Here ϵi and ϵp are energies of the impurity and bath states, d+

iσ and c+
pσ are the creation operators for impurity and surface electrons, Vip

is a hopping between impurity and surface states, Uijkl is the Coulomb matrix element and the impurity orbital index i (j, k, l) runs over
the d− states. Depending on the problem we solve the bath can correspond to either an effective Weiss field (DMFT) [5] or, for instance,
metallic surface states (adatom on a substrate) [4]. Since the general Coulomb interaction contains non density–density terms the local
part of Hamiltonian matrix is no longer diagonal and the additional effort during parallelization is required.

3. Storage formats

3.1. Spin-resolved Hamiltonian storage format

Usually the interaction part of the Hamiltonian is diagonal and does not require additional effort to compute matrix vector product,
therefore in this section we will consider the matrix representation of the hopping term of the Hamiltonian (1) only. Since the hopping
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