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a b s t r a c t

In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange
correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more
computing effort. When spin–orbit coupling (SOC) is taken into account, the non-collinear spin structure
increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC
are intractable in most cases. In this paper, we present an approximate solution to this problem by
developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme.
We demonstrate the power of this method using several examples and we show that the results compare
very well with those of direct hybrid functional calculations with SOC, yet the method only requires a
computing effort similar to that without SOC. The presented technique provides a good balance between
computing efficiency and accuracy, and it can be extended to magnetic materials.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Density functional theory (DFT) is a powerful method for pre-
dicting properties ofmaterials such as crystal structures, electronic
bands, phonon dispersions and other physical quantities. Practi-
cally, using appropriate exchange correlation (XC) functional is
very important for accuracy, especially for predicting band gaps of
materials. It is well known that the local density approximation
(LDA) and general gradient approximation (GGA) XC functionals
tend to severely underestimate band gaps [1]. Consequently, hy-
brid functionals (HF) such as PBE0[2–5], HSE03 and HSE06[6–9]
were proposed and they often predict very good band gap values
comparable to experiments. A drawback of HF is that it needs
very significant computing resources, generally several orders of
magnitude more compared to that of LDA or GGA.

In recent years, materials with strong spin–orbit coupling
(SOC) have attracted great attention, including topological insu-
lators [10,11] Bi2Se3 [12], silicene [13,14], germanene [13,14],
stanene [13–15], BiH [16,17], ZrTe5[18], Bi4Br4 [19], ZrSiO [20],
photoelectric materials PbI2 [21] and BiOCl [22], two-dimensional
group-VIB transitionmetal dichalcogenidesMoS2, MoSe2,WS2, and
WSe2 [23], IIIA-VA direct band-gap semiconductors with heavy
elements GaSb and InSb [24], etc. DFT calculations including SOC
involve non-collinear spin which requires at least eight times
more computing time as compared to that without SOC, due
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to the O(N3) scaling for solving the Kohn–Sham DFT equations
(KS-DFT). Since many of these SOC materials are semiconductors,
HF calculations are desired to more accurately predict their band
gaps and electronic structures. Unfortunately, HF+SOC calculations
are numerically intractable thus rarely used — unless the unit cell
is extremely small, due to the huge computational demand. It is the
purpose of this paper to report a practical solution to this problem.

In particular, we propose an efficient approximate technique
for HF+SOC calculations based on a mixed linear combination of
atomic orbital (LCAO) scheme. The mixed LCAO Hamiltonian is
constructed by two parts: an SOC-free part whose parameters
are obtained from HF calculations without SOC, and an SOC part
whose parameters are obtained from GGA+SOC calculations (DFT
at the GGA level with SOC). Applying this approach to several non-
magnetic materials, the results are demonstrated to be very close
to those of direct HF+SOC calculation andmuchmore accurate than
the GGA+SOC calculation. Importantly, the required computing
time of the mixed LCAO technique is comparable to that of HF
calculation without SOC.

In the rest of the work, the DFT calculations are performed
using the projector augmented wave method implemented in
VASP [25]. The Perdew–Burke–Ernzerhof (PBE) parametrization of
GGA functional [26,27] and Heyd–Scuseria–Ernzerh hybrid func-
tional (HSE06) [6–9] are used in the DFT calculations, and the
VASP2WANNIER90 interface [28–30] is used to obtain the LCAO
parameters from the DFT results. Since numerical calculations
are for the purpose of demonstrating the mixed LCAO technique,
structure optimization is omitted.
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2. The method

WANNIER90 [28,29] is used to construct LCAO or Wannier-
bases Hamiltonian from DFT calculations, and the resulting LCAO
Hamiltonian can reproduce the original energy dispersion very
well. We start by constructing an LCAO Hamiltonian to treat
HF+SOC using DFT calculations.

For a given system, the required computing effort is most
demanding for HF+SOC, followed by HF without SOC and next
followed byGGA+SOC. Clearly and as explained in the Introduction,
if HF+SOC were computationally affordable in general, the work
of this paper would not be necessary. That is not the case. In the
following we utilize HF without SOC and GGA+SOC to construct
a mixed LCAO Hamiltonian HMIX which we show to be a very
good approximation to HHF+SOC. In particular, HMIX has two terms,
HHF

0 which is obtained from HF without SOC, and HGGA
so which is

obtained from GGA+SOC,

HMIX
= HHF

0 + HGGA
so . (1)

Clearly, constructingHMIX only consumes a time that is comparable
to HF without SOC, thus much more efficient than that of a full
HF+SOC calculation. The fact that HMIX compare very well with
direct HF+SOC calculations (see below), suggests that the mixed
LCAO scheme provides a viable approximation for the complicated
HF+SOC analysis.

On the technical side, while HHF
0 can be constructed directly

from DFT calculation of HF without SOC, HGGA
so is obtained from

DFT of GGA+SOC involving a procedure for separating out the SOC
contributions. The latter procedure and an associated technical
detail are discussed in the following two subsections.

2.1. Separating out the SOC contribution

The Hamiltonian H of SOC systems can be divided into a non-
SOC term H0 plus the SOC term Hso:

H = H0 + Hso. (2)

In LCAO representation, H0 involves on-site energy and hopping
integral between different atomic orbitals, andHso comes fromSOC
effects.

In the spin-up and spin-down bases |↑⟩ and |↓⟩, the non-SOC
term H0 can be written as a diagonal 2 × 2 matrix:

H0 =

(
H↑

0 0
0 H↓

0

)
. (3)

For simplicity, we consider non-magnetic systems in the rest of
this work, but extension to magnetic system can be readily made
without fundamental difficulty. For non-magnetic materials,H↑

0 =

H↓

0 .
For the SOC term Hso, its original operator form is:

Hso =
h̄

4m2
0c2

(∇V × p ) · s ≡ ξL · s, (4)

where h̄ is the reduced Planck constant, m0 is the bare mass of
electron, c is the velocity of light, V (r) is the potential energy, p
the momentum, and s the vector of Pauli matrices representing
the spin degrees of freedom. For clarity we define a constant ξ ≡

h̄/(4m2
0c

2) and a vector operator L ≡ ∇V × p. Hso can then be
rewritten in the following matrix form:

Hso = ξ (Lxsx + Lysy + Lzsz)

= ξ

(
Lz Lx − iLy

Lx + iLy −Lz

)
≡

(
H↑↑

so H↑↓

so
H↓↑

so H↓↓

so

)
, (5)

in which H↓↓

so = −H↑↑

so and H↓↑

so = H↑↓†
so .

According to Eq. (2) to Eq. (5), the total Hamiltonian for a non-
magnetic system with SOC is:

H ≡

(
H11 H12
H21 H22

)
=

(
H↑

0 0
0 H↑

0

)
+

(
H↑↑

so H↑↓

so
H↑↓†

so −H↑↑

so

)
. (6)

Then, from Eq. (6), we can separate the total Hamiltonian H to
obtain H0 and Hso as the following:

H0 =

(
(H11 + H22) /2 0

0 (H11 + H22) /2

)
, (7)

Hso =

(
(H11 − H22) /2 H12

H21 − (H11 − H22) /2

)
. (8)

Hence, after obtaining the LCAO Hamiltonian HGGA+SOC from the
corresponding DFT calculation, its SOC part HGGA

so can be separated
out using Eq. (8).

2.2. Mixing the Hamiltonian

With the obtained non-SOC part HHF
0 and SOC part HGGA

so , the
mixed LCAO Hamiltonian HMIX that approximates HF+SOC is de-
termined by Eq. (1). Hereinafter we use the HSE functional for HF,
and PBE functional for GGA. Then Eq. (1) becomes

HMIX
= HHSE

0 + HPBE
so . (9)

The ‘‘mixing’’ procedure appears to be a simple addition. However
it should be noted that only when HHSE

0 and HPBE
so are constructed

under the same bases can they be added directly. We achieve this
by constructing HHSE

0 and HPBE
so in the same bases |ϕ̃mk⟩, and details

are presented in Appendix A. This way, we finally constructed the
mixed Hamiltonian HMIX to treat HSE+SOC.

3. Results, analysis and discussion

Having constructed HMIX to efficiently treat HSE+SOC, in this
section we demonstrate its accuracy using several material sys-
tems. Predicting band gap is important, which is one of the reasons
to use HSE in the first place [6–9]. We calculated band gaps for
eight semiconductor materials having heavy elements thus large
SOC, including two-dimensional (2D) mono-layers of PbI2, WSe2,
BiH, Bi4I4 and Bi4Br4; 3D crystals BiOCl, GaSb, and InSb [24]. The
SOC effect is important for thesematerials, especially for their band
gaps.

For the eight materials, we performed (very time-consuming)
direct HSE+SOC calculations and using the results, we constructed
an LCAOHamiltonianHHSE+SOC: this would not be possible without
the full direct HSE+SOC calculation. Then, we constructed HMIX

following the procedure in the last section which does not require
full HSE+SOC calculation. The three sets of results are compared:
direct numerical data from full HSE+SOC calculations and from
HHSE+SOC, as well as from HMIX.

First, band structures of the eight compounds calculated by our
method via HMIX of Eq. (9) is plotted in Fig. 1, together with those
from the direct HSE+SOC calculation and its fitting HHSE+SOC. The
full HSE+SOCdata are presented in black circles and the bands from
HHSE+SOC are in thick red lines: these are used as benchmarks to
compare to our results by HMIX which are presented in thin blue
lines. We can see that the bands calculated by our method via
HMIX of Eq. (9) (thin blue lines) are qualitatively consistent to the
benchmark results for all cases. In particular, band dispersions by
HMIX and the benchmark HHSE+SOC agree well for PbI2, WSe2, GaSb,
and InSb; and the agreement is somewhat reduced for BiOCl, BiH,
Bi4I4, and Bi4Br4. In the latter cases, although the heavy element Bi
gives rise to some quantitative difference, there is no qualitative
discrepancy for the full range of the Brillouin zone.
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