
Please cite this article in press as: W.R. Saunders, et al., A domain specific language for performance portable molecular dynamics algorithms, Computer Physics
Communications (2017), https://doi.org/10.1016/j.cpc.2017.11.006.

Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A domain specific language for performance portable molecular
dynamics algorithms
William Robert Saunders a, James Grant b, Eike Hermann Müller a,*
a Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, Bath, United Kingdom
b Department of Chemistry, University of Bath, Bath BA2 7AY, Bath, United Kingdom

a r t i c l e i n f o

Article history:
Received 12 April 2017
Received in revised form 10 November
2017
Accepted 12 November 2017
Available online xxxx

Keywords:
Molecular dynamics
Domain specific language
Performance portability
Parallel computing
GPU

a b s t r a c t

Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing
simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes
increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology)
and specialists in the low level parallelisation and optimisation of their codes. To address this challenge,
we describe a ‘‘Separation of Concerns’’ approach for the development of parallel and optimised MD
codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL),
which is then translated into efficient computer code by a scientific programmer. In a related context, an
abstraction for the solution of partial differential equations with grid based methods has recently been
implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation
system for molecular dynamics simulations on different parallel architectures, including massively
parallel distributedmemory systems andGPUs.Wedemonstrate the efficiency of the auto-generated code
by studying its performance and scalability on different hardware and compare it to other state-of-the-
art simulation packages. With growing data volumes the extraction of physically meaningful information
from the simulation becomes increasingly challenging and requires equally efficient implementations. A
particular advantage of our approach is the easy expression of such analysis algorithms. We consider two
popular methods for deducing the crystalline structure of a material from the local environment of each
atom, show how they can be expressed in our abstraction and implement them in the code generation
framework.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Molecular Dynamics (MD) codes such as NAMD [1,2], LAMMPS
[3], GROMACS [4,5] and DL-POLY [6,7] are important computa-
tional tools for understanding the fundamental properties of phys-
ical, chemical and biological systems. They can be used to verify
phenomenological theories about atomistic interactions, under-
stand complex biomolecules [8] and self assembly processes [9],
replace costly laboratory experiments and allow access to areas of
parameter space which are very difficult to reproduce experimen-
tally. For example, simulations can be run at high pressures and
temperatures found in stellar atmospheres [10], or for dangerous
substances, such as radioactive materials (see e.g. [11]). Classical
MD codes simulate a material by following the time evolution
of a large number of particles which obey the laws of classical
physics (in particular Newton’s laws [12]) and interact via phe-
nomenological potentials. To extract meaningful information, the

* Corresponding author.
E-mail addresses:w.r.saunders@bath.ac.uk (W.R. Saunders),

r.j.grant@bath.ac.uk (J. Grant), e.mueller@bath.ac.uk (E.H. Müller).

state of the system (i.e. the distribution of particle positions and
velocities) has to be analysed, for example by calculating pairwise
distribution functions. Information on the crystalline structure of
a material can be derived by inspecting the local environment of
each particle [13–15].

In order to study systems at physically relevant length- and
timescales and to produce statistically converged results, modern
codes typically run in parallel on state-of-the art supercomput-
ers [2]. With the recent rise of novel manycore chips, such as GPU
and Xeon Phi processors, several popular MD simulation packages
have been successfully adapted to those new architectures, see
e.g. [16–21]. However, developers of MD codes face significant
challenges: adapting and optimising existing codes requires not
only a deep understanding of the physics and chemistry of the
simulated system, but also detailed knowledge of the rapidly
evolving hardware. To name just a few complications, GPUs have a
complexmemory hierarchy (host/devicememory, sharedmemory
and local registers) and any data access has to be coalesced to avoid
unnecessary data movement. Write conflicts have to be avoided
in threaded implementations on manycore chips and recent CPUs,

https://doi.org/10.1016/j.cpc.2017.11.006
0010-4655/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2017.11.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:w.r.saunders@bath.ac.uk
mailto:r.j.grant@bath.ac.uk
mailto:e.mueller@bath.ac.uk
https://doi.org/10.1016/j.cpc.2017.11.006

Please cite this article in press as: W.R. Saunders, et al., A domain specific language for performance portable molecular dynamics algorithms, Computer Physics
Communications (2017), https://doi.org/10.1016/j.cpc.2017.11.006.

2 W.R. Saunders et al. / Computer Physics Communications () –

such as the Intel Haswell and Broadwell chip, only run at peak
performance if the code can be vectorised. Since in practice it is
rare for a chemist/physicist to possess the skills for optimising
code on this level, it can be very challenging to port MD software
to a new architecture and maintain its performance in a rapidly
evolving hardware landscape. To address this fundamental issue,
we describe an approach based on the idea of a ‘‘Separation of Con-
cerns’’ between the domain specialist and scientific programmer.
By using a suitable abstraction, both the scientific capabilities and
computational performance can be improved independently.

DSLs for grid-based PDE solvers.

Very similar issues have been faced by developers of grid-
based solvers for partial differential equations (PDEs). The key
observation there was that the fundamental and computationally
most expensive operations can be expressed in terms of a suitable
abstraction: the algorithms (e.g. explicit time stepping methods
or iterative solvers for elliptic PDEs) can be formulated as the
repeated iterations over a set of grid entities (cells, vertices, faces,
edges), each of which can hold information, such as a local field
value. This expression of the algorithm in a Domain Specific Lan-
guage (DSL) simplifies the implementation significantly: once the
domain-specialist has expressed the code in terms of those basic
operations at the correct abstraction level and encapsulated any
data in the corresponding fundamental data structures, a com-
putational scientist can implement and optimise the code on a
particular architecture.

By introducing the correct abstraction, only a small set of typical
loops, which can be parametrised over the set of input and output
data, has to be considered. This concept has been applied very
successfully in the development of the performance-portable OP2
library [22,23], which allows the execution of finite element and
finite volume codes on a range of architectures. As demonstrated
in [22–25], the code achieves excellent performance on CPUs, GPUs
and Xeon Phi processors. Similar techniques for structured grids
have been used to develop the C++ based STELLA grid library for
the COSMOnumerical weather forecastmodel [26]. DSLs for highly
efficient stencil computations on GPUs have also been described
in [27,28].

Recently OP2 was re-implemented in Python as the PyOP2 [29]
framework. In PyOP2 the science user specifies the computation-
ally most expensive operations as a set of small kernels written
in C. Using code generation techniques, those kernels are then
compiled and executed on a particular architecture. By employing
just-in-time compilation, the kernels are launched from a high-
level Python code which implements the overall solver algorithm.
The performance of the resulting code is on a par with that of
monolithic Fortran- or C-implementations.

A new DSL for MD simulations.

In this paper we describe a similar DSL approach for molecular
dynamics simulations. The fundamental operation we consider is
a two-particle kernel: the user implements a short C-codewhich is
executed for each combination of particle pairs in the simulation.
This kernel can modify any properties stored on those particles. A
classic example is the force calculation: for each pair of particles,
the force (output) is calculated as a function of the two particle
positions (input). This local operation can be expressed in a few
lines of C-code. The code is then executed over all particle pairs,
using the optimal algorithm for a particular hardware and the
nature and size of the problem. For example, on a CPU architecture,
cell-list or neighbour-list methods can be used, whereas on GPU
a neighbour-matrix approach as in [30] might be more suitable.
Those details of the kernel execution, however, are of no interest

Fig. 1. Structure of the code generation framework. The ‘‘Separation of concerns’’
between the domain specialist user and computational scientist is indicated by the
dashed horizontal line.

for the science developer who can focus on (i) the implementation
of the local kernel and (ii) the overall algorithmwhich orchestrates
the kernel calls in an outer timestepping loop.

To achieve this we developed a Python-based code generation
system which creates and compiles fast, architecture dependent
wrapper code to execute the C-kernel over all particle pairs. Our
approach is shown schematically in Fig. 1. By using Python as a
high-level language, looping algorithms such as the Velocity Verlet
method [31] (see also e.g. [32,33]) for timestepping or advanced
thermostats [34,35] can be implemented very easily, while still
generating fast code for the computationally expensive particle
loops.

In the following we describe a proof-of-concept implemen-
tation of the DSL and concentrate on short-range two-particle
kernels, i.e. kernels which are only executed for particles which
are separated by no more than a specified cutoff distance. We
demonstrate that for a Lennard-Jones benchmark we achieve per-
formance similar to state-of-the-art simulation tools such as DL-
POLY and LAMMPS.

While many atomistic models require the calculation of long
range forces and intra-molecular interactions, systems containing
only short range interactions remain actively studied, particularly
in problems in soft matter and nucleation see e.g. [36,37]. In a
separate paper [38] we report on the implementation of a particle-
Ewald method [39] for electrostatic forces in our framework. As
discussed in Section 6, more advanced long range algorithms
and further generalisations of the framework to support multi-
ple species and bonded interactions for molecules will be imple-
mented in the future.

We stress, however, that our approach is not limited to force
calculations. To extract meaningful information from a simulation,
the results have to be analysed. With growing problem sizes and
data volumes, this step becomes computationally expensive and
requires efficient and parallel implementations. Below we con-
sider two methods for analysing local environments which can
be used to classify the crystalline phase of a material: the bond
order analysis in [13] and common neighbour analysis in [14]
(see also [15] for an overview of other analysis methods). In the
traditional approach, the user would run the simulation with an
existing MD package and then write post-processing code to ex-
tract physicallymeaningful information from the output. However,
in contrast to the MD code itself, parallelising this analysis code or

Download English Version:

https://daneshyari.com/en/article/6919138

Download Persian Version:

https://daneshyari.com/article/6919138

Daneshyari.com

https://daneshyari.com/en/article/6919138
https://daneshyari.com/article/6919138
https://daneshyari.com

