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A “bent waveguide” in the sense used here is a small perturbation of a two-dimensional rectangular
strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-
channel coordinate. The goal is to calculate the smallest (“ground state”) eigenvalue of the stationary
Schrédinger equation which here is a two-dimensional Helmholtz equation, v + ¥y, + EY» = 0 where
E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the
waveguide. Perturbation theory gives a good description when the “bending strength” parameter ¢ is
small as described in our previous article (Amore et al., 2017) and other works cited therein. However,
such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is
therefore useful to develop numerical methods for the perturbed strip to cover intermediate € where the
perturbation series may be inaccurate and also to check the pertubation expansion when € is small. The
perturbation-induced change-in-eigenvalue, § = E(e) — E(0), is O(¢?). We show that the computation
becomes very challenging as ¢ — 0 because (i) the ground state eigenfunction varies on both O(1) and
0(1/€) length scales and (ii) high accuracy is needed to compute several correct digits in §, which is
itself small compared to the eigenvalue E. The multiple length scales are not geographically separate,
but rather are inextricably commingled in the neighborhood of the boundary deformation. We show
that coordinate mapping and immersed boundary strategies both reduce the computational domain to
the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor
product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-
channel direction. However, sine functions generate rather accurate analytical approximations with just
a single basis function.

In the down-channel coordinate, X € [—o0, co], Fourier domain truncation using the change of
coordinate X = sinh(Lt) is considerably more efficient than rational Chebyshev functions TB,(X; L). All
the spectral methods, however, yielded the required accuracy on a desktop computer.

Published by Elsevier B.V.

1. Introduction

The numerical computations have two large challenges. The
eigenfunctions for the uniform, unperturbed waveguide are in-

As reviewed in our previous article [1], there is considerable
interest in the localized ground state eigenfunctions that arise
when an infinitely long, uniform width quantum waveguide is
perturbed by a localized bulge in the wall or by a sharp bend as
shown schematically in Fig. 1. Perturbation theory, as developed in
our article and by other articles we cite, is a good option when the
perturbation parameter is very small. However, it is still desirable
to develop numerical methods that can compute the eigenvalues
and eigenfunctions with spectral accuracy.
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dependent of the down-channel coordinate x € [—oc0, o¢] and
are sinusoids in the cross-channel coordinate y. However, when
the perturbation is very small but has a length scale comparable
to the width of the waveguide (the usual case), the ground state
eigenfunction has two widely disparate length scales. One is the
0(1) length scale of the wall perturbation. The other is the O(1/¢)
length scale of the slow decay of the eigenfunction in the down-
channel direction.

This is one numerical challenge, but verification of perturbation
theory is also hard because, to provide any useful information
about the accuracy of the perturbative approximation, the numer-
ical method must accurately calculate the tiny difference between
the perturbed and unperturbed eigenvalues.
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Table 1
Notation.
x,¥) Cartesian coordinates for the physical domain
E Schroedinger equation eigenvalue
B(x,y) Boundary function: its zero isoline is the boundary
D Total degree of a polynomial (for X™"* D = m + n)
H Pseudospectral discretization matrix
H Laplace operator
L Map parameter for rational Chebyshev functions TB,
£ Map parameter for the sinh-Fourier method
M Number of basis functions in X
N Number of basis functions in Y, the cross-channel coordinate
Niotal Total number of functions in the tensor product basis, MN
P Number of interpolation points
T Parameter for parametric specification of the upper boundary curve
W Boundary of the region X € [20, oo] where asymptotic analysis yields an explicit approximation to the eigenfunction
X Computational coordinate in the “down-channel” direction, X € [—7, 7]
Y Computational coordinate perpendicular to the walls (“cross-channel coordinate”), Y € [0, 1]
§ Change in the ground state eigenvalue due to perturbation
€ Perturbation parameter; strength of domain deformation
v Mode number for the y-dependent factor (cross-channel factor)
v(x,y) Wavefunction [the unknown in the Schroedinger equation]
xn(X) One-dimensional basis in the down-channel computational coordinate X
On(Y) One-dimensional basis in the cross-channel computational coordinate Y
o(x,y) Metric factor in the PDE induced by conformal mapping
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Fig. 1. Schematic of a bent waveguide. The unperturbed waveguide is a strip which
is infinitely long in the “down-channel” coordinate x. The waveguides considered
here are perturbed by bulges in one wall and are not actually bent. The jargon
“bent waveguide” has become a shorthand for the class of “waveguides that are
perturbations of a uniform-width, infinitely long rectangle by bend, bulging walls
or other deformation that allows a bound state of finite energy”.

Thus, a low order method is quite useless. All the algorithms
applied here are spectrally accurate.

Spectral methods applied to a phenomenon with a single spatial
scale are well understood as cataloged in [2-4]. However, applying
spectral methods when there are multiple spatial scales is still an
application on the research frontier. SIAM founded its Journal of
Multiscale Modeling and Simulation not because multiple scales are
passé, but because multiple scale methods are the frontier.

The eigenproblem is

U+ Yy +EY =0, Y(xy)=0V(x,y) € 982 (1)

where E is the eigenvalue and we impose homogeneous Dirichlet
boundary conditions on the walls of the waveguide d£2. Important
symbols are listed in Table 1. Note that subscripts with respect
to a coordinate denote partial differentiation with respect to that
coordinate, a convention employed throughout this article.

2. Strategies for an asymmetric channel

Many strategies have been applied to complicated domains,
but we concentrate on approaches that are well-suited to per-
turbed rectangular domains: conformal mapping and the im-
mersed boundary method. Both transform the waveguide from the
“physical coordinates” (x, y) to computational coordinates (X, Y)
where the domain is a channel of uniform unit width in the cross-
channel coordinate Y, but extending indefinitely in the down-
channel X coordinate. Thus, like the unperturbed domain, the
computational domain in the coordinates (X, Y) is a rectangle.

We shall now briefly describe each strategy.

In the conformal mapping method, the computational domain
is the infinite, uniform width channel in the coordinates (X, Y). This
is the image of a non-rectangular domain under a conformal map-
ping. Because the mapping is conformal, the coordinate transfor-
mation merely multiplies the eigenvalue term in the Schrédinger
equation by the metric factor. The “crowding” or “Geneva Effect”,
that is, a highly nonuniform grid, is fatal to most efforts at grid
generation by conformal mapping [5]. Here, crowding is not an
issue because the map is a small perturbation of the identity trans-
formation. The conformal mapping used here is given by a simple
analytical expression. However, an explicit conformal map may
not be available. What then? One option is to calculate conformal
maps using perturbation theory as in [6,7]. Another is to apply
PDE-solvers that do not require a conformal mapping as elaborated
below.

The key idea of an “immersed boundary” method is to embed
the physical domain inside a computational domain which, in
this case, is an infinite strip of uniform width [8-10]. Boundary
conditions are imposed by Krylov’'s method [6]. That is, if the
boundary is specified implicitly as the union of the zero isolines of a
function B(x, y), then homogeneous Dirichlet boundary conditions
are enforced by writing the approximation as

Y(x,y) = B(x, y)u(x, y) (2)

where v(x, y) is an unconstrained sum of tensor product basis
functions.

An alternative to these approaches is to map the perturbed
waveguide into the channel of uniform unit width using a non-
conformal mapping. The bad news is that the metric factors will be
numerous, significantly extending the debugging time. However,
relaxing conformality opens up a vast spectrum of grid generation
techniques for future studies.

3. A typical asymmetric channel

In the rest of the article, we focus on an example that is rep-
resentative of a broad class of bent waveguides - more accurately
described as “bulging waveguides” - in which the perturbation is
a distortion of the shape of the upper boundary, y = 1. We shall
concentrate on a particular distortion, but the methods applied are
general. In our case, the perturbation is generated by the conformal
map

F(z) = z + € tanh(z), €K1 (3)
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