
Please cite this article in press as: X. Liu, et al., Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme, Computer Physics Communications
(2017), https://doi.org/10.1016/j.cpc.2017.10.011.

Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Fully-relativistic full-potential multiple scattering theory: A
pathology-free scheme✩

Xianglin Liu a,*, Yang Wang b, Markus Eisenbach c, G. Malcolm Stocks d

a Department of Physics, Carnegie Mellon University, United States
b Pittsburgh Supercomputing Center, Carnegie Mellon University, United States
c Center for Computational Sciences, Oak Ridge National Laboratory, United States
d Materials Science and Technology Division, Oak Ridge National Laboratory, United States

a r t i c l e i n f o

Article history:
Received 4 July 2017
Received in revised form 27 September
2017
Accepted 20 October 2017
Available online xxxx

Keywords:
Multiple scattering theory
Full-potential
Dirac equation
KKR method
Green function
Pole-searching

a b s t r a c t

The Green function plays an essential role in the Korringa–Kohn–Rostoker (KKR) multiple scattering
method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham
equation and robust methods exist for spherical potentials. However, when applied to a non-spherical
potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge
density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR
method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations
using the generalized variable phase (sine and cosinematrices) formalism Liu et al. (2016). The pathology
around the origin is completely eliminated by carrying out the energy integration of the single-site Green
function along the real axis. By using an efficient pole-searching technique to identify the zeros of the
well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally
efficient, with speed comparable to the conventional contour energy integration method, while free of
the pathology problem of the charge density. As an application, this method is utilized to investigate
the crystal structures of polonium and their bulk properties, which is challenging for a conventional
real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the
relativistic effects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Multiple scattering theory (MST) underpins a number of widely
used methods for solving the electronic structure problem in pe-
riodic solids, all of which have their origins in the KKR method
originally introduced by Korringa [1] in 1947 and independently
re-derived by Kohn and Rostoker [2] in 1953. Two features of
MST distinguish it from the conventional Rayleigh–Ritz variational
approaches. Firstly, it naturally yields a separation between the
single-site potential scattering and structural arrangement (posi-
tions) of the individual scatterers. Secondly, in the framework of
density functional theory (DFT), it provides an explicit expression
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for the Green function of the system,which can then be used to cal-
culate the charge and spin densities without explicit calculation of
thewavefunctions that are the focus of Rayleigh-Ritzmethods. The
availability of the Green function makes MST a versatile tool that
can be easily combined with other methods to investigate more
complex systems than periodic solids. For example, by applying
the Dyson’s series expansion to the Green function, defects and
impurities in an otherwise perfect crystal can be investigated [3].
Another example is the KKR-CPA method, which is based on a
combination of MST with the coherent potential approximation
(CPA) [4–6] to calculate the configurationally averaged proper-
ties of disordered systems, such as random alloys [7,8] and the
disordered local moment state of metallic magnets [9]. A more
recent development is in the calculation of strongly correlated
systems, where theMST Green function can be readily used in con-
junction with the GW approximation [10] or the dynamical mean
field theory (DMFT) [11]. Moreover, the real space formulation of
MST [12] has demonstrated essentially ideal linear scalability on
current supercomputing architecture [13], and, as a result, can be
employed to study solid state systems with tens of thousands of
atoms.
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The originally formulatedMST solved the Schrödinger equation
within themuffin-tin (MT) potential approximation,where the po-
tential is assumed to be spherically symmetric within the muffin-
tin spheres and constant in the interstitial region [1,2]. While
the muffin-tin approximation generally works well for systems
dominated bymetallic bonding, it cannot properly describe a wide
range of systems where the asymmetries of the effective poten-
tial [14] play an important role, such as surfaces, two-dimensional
materials, and systems with directional covalent bonding. In addi-
tion, because the Schrödinger equation is nonrelativistic, it cannot
properly describe systems where relativistic effects are important.
In particular, it does not include spin–orbit coupling (SOC), a sub-
ject currently of great interest due to its role in a rich diversity
of technologically important phenomena, such as magnetocrys-
talline anisotropy, Rashba effect, and magnetic skyrmions [15]. To
take into account the relativistic effects, a common practice is to
treat the relativistic kinematic effects with the scalar-relativistic
approximation [16], and include SOC in a perturbative second-
variational way. However, this strategy is problematic for heavy-
element systems where SOC is not small compared to crystal field
splitting. To take into account both relativity and the full shape
dependence of the crystal potential on an equal footing, the orig-
inal MST formulation must be extended to a full-potential, Dirac
equation, based theory, and indeed much work has been done in
this regard by a number of groups [17–23].

In MST the Green function is constructed from the regular and
irregular solutions of the Kohn–Sham equations. In contrast to the
MT scheme, a persistent problem in the standard implementation
of the full-potential MST is that the numerical errors in the ir-
regular solutions are very difficult to control near the origin [24].
As a result, the charge density calculated from the Green function
exhibits pathologies which can extend to a sizable fraction of the
muffin-tin radius. The practice employed by Huhne et al. [21] is
to drop the non-spherical components of the potential within a
cutoff radius rns. While this is a good approximation for the poten-
tial, unfortunately it requires extrapolations of the solutions and
charge densities within rns. Therefore, near the nucleus, the charge
density of the valence electrons no longer has the correct undula-
tions, which hinders the accurate determination of the Hellmann–
Feynman forces. As an improvement, a sub-interval technique is
proposed in Ref. [25] to systematically reduce the numerical error
by decreasing the step size when approaching the origin. This
method requires significantlymore grid points as rns decreases, and
is less effective as lmax (angular momentum cutoff of the solutions)
increases. In Ref. [26], a modified single-site Green function is
proposed to avoid directly using the irregular solutions. However,
the volume integral of the irregular solutions is still needed to
construct the modified Green function.

In all the above methods, the energy integration of the Green
function is carried out in the complex plane. A different strategy
to overcome the pathology problem is to split the Green function
into the single-site part and the back scattering part, and perform
the integration of the single-site Green function along the real axis,
while integrating the irregular solution free back scattering part
in the complex energy plane. The key observation is that on the
real energy axis, the irregular solutions (in the Oak Ridge-Bristol
convention of the Green function [27])make no contribution to the
charge and spin densities, therefore can simply be ignored when
real energy integration is taken. Although this method completely
eliminates the pathology of charge density, it is not popular be-
cause the real energy integration is considered to be computa-
tionally expensive in the presence of sharp resonance states, and
completely fails when shallow bound states exist. However, by
making use of an efficient pole-searching algorithm proposed by
one of the authors, Y.Wang,we find the real axis energy integration
can actually be accomplished reliably and efficiently, with speed

similar to the contour integration methods. Furthermore, unlike
the unphysical poles due to inverse of the sine matrix [24], the
poles obtained in our method directly correspond to the reso-
nance and bound states of the single-atom potential, therefore
are physical and numerically stable. Finally, because our method
explicitly identifies both bound and virtual bound electron states, it
provides an excellent framework for implementing schemes, such
as LDA+U [28] and self-interaction correction (SIC) [29,30], aimed
at correcting local approximations to the DFT for the effects of
strong correlation.

In Section 2 we explain in detail how the poles of the single-
site Green function can be used to facilitate the energy integra-
tion of the shallow bound states and the resonance states, with
efficiency of this scheme demonstrated at the end. Details of our
pole-searching technique are presented in Section 3. In Section 4,
polonium is used as an example to demonstrate our method. The
lattice constants, bulk modulus and crystal structures of Po are
calculated from ab initio and compared with results from other
methods. In Section 5, the density of states and bulk properties
of copper, silver, and gold are calculated as a further test of our
method and to quantify the increasing impact of relativistic effects.

2. Methods

The two physical quantities of most interest in the present
context are the integrated density of states N(E) and the charge
density ρ(r). In a typical ab initio DFT calculation, these quantities
need to be evaluated at each self-consistent loop to determine
the new Fermi energy and effective potential. In MST, the charge
density is obtained from the energy integral of the retarded Green
function GR(E, r, r′)

ρ(r) = −
1
π
Im Tr

∫ EF

Eb

GR(E, r, r)dE, (1)

where Eb is the bottom of the valence band, EF is the Fermi Energy.
The integrated density of states (IDOS) is given by the energy
integral of the density of states (DOS) n(E)

N(E) =

∫ E

Eb

n(E ′)dE ′, (2)

and n(E) is calculated from the volume integral of the retarded
Green function

n(E) = −
1
π
Im Tr

∫
Ω

GR(E, r, r)dr. (3)

Sincewe alwaysworkwith the retardedGreen function, to simplify
the notation, in the following, the retarded Green function is sim-
ply referred to as the Green function and is denoted by G(E, r, r′).
The Green function is obtained by solving the Dirac–Kohn–Sham
equation and the details have been presented in Ref. [17]. Note that
to obtainN(E) and ρ(r), the integration along the real energy axis is
required. Unfortunately, for bulk materials, the energy integration
along the real axis turns out to be infeasible due to the dense set of
poles in the multiple scattering Green function. One resolution of
this problem is to carry out the integration along a contour in the
complex energy plane [31], with the observation that the Green
function is holomorphic except for poles at the bound states and
a cut on the real axis starting at Eb. Because the DOS becomes
increasingly smooth the further the contour is distorted into the
complex plane, this method has been found to be very efficient.
Indeed, deploying the Gaussian quadrature integration method,
only a few dozen energy points are needed to reach a high accu-
racy. In practice, however, the implementation of the full-potential
scheme is hindered by the presence of the irregular solutions in
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