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a b s t r a c t

This work introduces a parallel computing framework to characterize the propagation of electron waves
in graphene-based nanostructures. The electron wave dynamics is modeled using both ‘‘microscopic’’
and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac
equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron
waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry
of themicroscopic potential in the electron velocity is discussed. The computationalmethodologies target
the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built
with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high
throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves
speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing
simulation times from several hours to a couple of minutes.
Program summary

Program title: GslSim.
Program Files doi: http://dx.doi.org/10.17632/prmfv63nj6.1
Licensing provisions: GPLv3.
Programming language: C, OpenCL and Matlab for results analysis.
Nature of problem: Computing the time evolution of electron waves in graphene superlattices is a time

consuming process due to the high number of necessary nodes to discretize the spatial and time domains.
Solutionmethod:Wedevelop a simulator based on the C/OpenCL standards to study the time evolution

of electron waves in graphene superlattices by exploiting hardware architectures such as graphics
processing units (GPUs) to speedup the computation of the pseudospinor.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a carbon-based two-dimensional material where
the carbon atoms are arranged in a hexagonal lattice. Recent stud-
ies suggested the possibility of controlling the electronic properties
of graphene by applying an external periodic electrostatic potential
on its surfacewith a patternedmetallic gate, amongother possibili-
ties. These nanostructuredmaterials are knownas graphene super-
lattices (GSLs) [1–10]. The low-energy dynamics of the electrons
in GSLs is typically characterized by the massless Dirac equation
[11–13] whose solution is usually numerically determined,
for instance with the Finite-Difference Time-Domain (FDTD)

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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method [14,15]. The FDTDalgorithm is used in a variety of scientific
domains and the associated computational complexity is deter-
mined by the nature of the problem. Previous works in the con-
text of electromagnetism have shown that it is possible to obtain
impressive speedup ratios (on the order of 20–100x) with a single
graphics processing unit (GPU) implementation, e.g., [16,17]. Fur-
thermore, a multi-GPU environment enables additional speedup
gains, e.g., [18,19].

The application of the FDTD scheme to the electron wave prop-
agation in graphene platforms typically leads to computationally
demanding simulations, consuming long periods of processing
time. This is mainly due to two factors: first, the computational
complexity associated with the density of nodes necessary to ac-
curately discretize the spatial domain and the nature of the FDTD
methodology which is based on a leap-frog scheme; second, the
hardware and software limitations of the computational resources
that are typically used, such as bandwidth constraints or the low
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Fig. 1. (a) Graphene superlattice characterized by a sinusoidal electrostatic potential in the microscopic model and the corresponding continuummodel where the granular
details are homogenized. (b) Anisotropy parameter χ of the homogenized superlattice as a function of the peak modulation amplitude Vosc .

number of cores available in central processing units (CPUs) or the
available sequential programming models.

The purpose of this work is to develop a framework that
enables the fast simulation of the electron wave dynamics in
GSLs using either a ‘‘microscopic’’ approach (relying on the two-
dimensional massless Dirac equation) or an effective medium for-
malism wherein the microscopic details of the superlattice are
described by some effective parameters. Particularly, we focus on
parallelization strategies relying on the C/OpenCL standards to
exploit higher throughput performance in heterogeneous multi-
GPU environments [20–23]. To this end, we propose two distinct
models, namely a simulation concurrency model and a device
concurrency model that capture different simulation scenarios.
Furthermore, we present a detailed study of a time evolution prob-
lem in graphene superlattices with localized scattering centers.

The article is organized as follows. In Section 2 we present
a brief overview of the electron wave propagation in GSLs and
of the FDTD numerical solution. Section 3 describes the adopted
computational procedures and parallelization strategies. The pro-
posed methodologies are applied to study the time evolution of
electronic states in a superlattice with localized scattering centers
in Section 4. Performance metrics are reported and discussed in
Section 5. The article ends with a brief conclusion in Section 6.

2. Graphene superlattices and the electron wave propagation

2.1. Formalism

This section identifies and describes the key steps in the formal-
ization of the equations that govern the behavior of electronwaves
in graphene-based nanostructures. This method was developed
in [15] and establishes the basis of our study.

The propagation of charge carriers in graphene superlattices
may be characterized in the spatial and time domains by solving
the massless Dirac equation [12]:

Ĥψ = ih̄
∂

∂t
ψ, (1)

being Ĥ = −ih̄vFσ · ∇ + V (x, y) the microscopic Hamiltonian
operator near the K point, V the microscopic electric potential,
ψ = {Ψ1,Ψ2}

T the two component pseudospinor, vF ≈ 106m/s
is the Fermi velocity, σ = σxx̂ + σyŷ a tensor written in terms
of the Pauli matrices and ∇ =

∂
∂x x̂ +

∂
∂y ŷ. In GSLs, the potential

V is a periodic function of space. A complex spatial dependence
of the potential V can increase the computational effort to an
undesired level and even limit the understanding of the relevant
physical phenomena. A solution to reduce the complexity of the
problem is to use effective medium techniques. It was recently
shown that electronic states with the pseudo-momentum near
the Dirac K point can be accurately modeled using an effective
medium framework [24,25].Within this approach, themicroscopic
potential is homogenized and the effective Hamiltonian treats the

superlattice as a continuum characterized by some effective pa-
rameters [24,25]. For the cases of interest in thiswork, the effective
Hamiltonian is of the form:(

Ĥeffψ

)
(r) =

[
−ih̄vFσef · ∇ + Veff

]
· ψ (r) , (2)

where σeff = χxxσxx̂ + χyyσyŷ and Veff is an effective potential.
Moreover, the energy dispersion of the stationary states in the
homogenized superlattice can be calculated using [24]:

|E − Veff | = h̄vF
√
χ2
xxk2x + χ2

yyk2y, (3)

where k = (kx, ky) is the wave vector of the electronic state with
respect to the K point and E is the electron energy.

Next we characterize the effective parameters χxx, χyy and Veff
of the effective Hamiltonian of two distinct superlattices.

2.1.1. Anisotropic superlattices
To begin with, we consider 1D-type graphene superlattices de-

scribed by a microscopic potential with a spatial variation V (x) =

Vav + Vosc sin(2πx/ax), as shown in Fig. 1. Here, Vav is the average
electric potential, Vosc is the peak amplitude of the oscillations and
ax is the spatial period. These structures have been extensively
studied in the literature and can have strongly anisotropic Dirac
cones and particle velocities, allowing for the diffractionless prop-
agation of electron waves [5,6,15,25].

The continuummodel for the propagation of electrons in these
superlattices was thoroughly discussed in [15,24,25]. In particular,
in Ref. [24] it was found that the effective parameters of the
stratified superlattice satisfy χxx = 1 and χyy = χ . The anisotropy
parameter χ depends on the peak modulation amplitude Vosc and
can be numerically calculated using the approach described in [24].
The explicit dependence of χ on Vosc is represented in Fig. 1, and
it varies from χ = −0.4 to χ = 1. The latter value corresponds
to pristine graphene. The anisotropy ratio determines the (wave
packet) electron velocity, which under the continuum formalism is
v =

1
h̄∇kE = sgn(E−Vav)vF (k2x +χ2k2y)

−
1
2 (kxx̂+χ2kyŷ) [15,24,25].

Thus, the value of χ determines the degree of anisotropy and a
preferred direction of propagation. In particular, in an extreme
anisotropy regime, where the anisotropy ratio vanishes, χ = 0,
the group velocity is equal to v = ±vF x̂, so that the electron waves
propagate without diffraction along the x-direction [3,15,26–30].
Thus the electron transport differs in a drastic manner from pris-
tine graphene (χ = 1) wherein the electrons propagate parallel to
the quasi-momentum k.

2.1.2. Superlattices with localized scattering centers
Next, we characterize the effective Hamiltonian of a superlat-

tice formed by localized scattering centers, which is modeled by
an electric potential periodic in the x- and y-coordinates V (x, y) =

Vav+Vosc sin(2πx/ax) sin(2πy/ay) as illustrated in Fig. 2. To the best
of our knowledge, this superlatticewas not previously discussed in
detail in the literature. In this work, it is assumed that ax = ay =
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