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a b s t r a c t

We developed a numerical method to compute the electromagnetic field of arbitrary static and axisym-
metric current distribution. Themethod (i) numerically evaluates a double integral of the electrostatic and
magnetostatic potentials of an infinitely thin ring current by the split quadraturemethod using the double
exponential rules, and (ii) derives the electrostatic field and the magnetostatic induction by numerically
differentiating the numerically integrated potentials by the central difference formula. A comparisonwith
the exact solution for a poloidal current distributionwith an anisotropic Gaussian damping confirmed the
14- and 9-digit accuracy of the potential and the field/induction computed by the new method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The computation of the electromagnetic field for a general
axisymmetric three-dimensional charge/current distribution is a
classic problem in physics and engineering [1,2]. Indeed, its appli-
cations are as wide as (i) the electron and ion optics [3], (ii) the
charged particle acceleration [4], (iii) the electron microscopy and
spectroscopy [5], and (iv) the magnetic coil design [6]. Especially,
it is one of the building blocks of the plasma physics and controlled
nuclear fusion [7,8].

If the spatial distribution of the static electric charge, ρ(x), and
of the static current vector, J(x), are explicitly known, then the elec-
trostatic scalar potential, Φ(x), and the magnetostatic vector po-
tential,A(x), arewritten as convolutions of these distributionswith
the Newton kernel, 1/|x − x′

|, [9, equations (1.17) and (5.32)] as

Φ(x) =
1

4πε0

∫
V

ρ
(
x′
)

|x − x′|
d3x′, (1)

A(x) =
µ0

4π

∫
V

J
(
x′
)

|x − x′|
d3x′, (2)

where the integration is conducted over all the volume occupied
by the charge and/or the current vector, and ε0 andµ0 are the vac-
uum permittivity and permeability, respectively. The associated
electrostatic field and the resulting magnetostatic induction are

E-mail address: Toshio.Fukushima@nao.ac.jp.

expressed as
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3 d
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×

(
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)
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3 d
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These are nothing but Coulomb’s law and the Biot–Savart law
[9, equations (1.5) and (5.14)].

When the charge/current distribution is finitely bounded, the
external electromagnetic field can be expanded in harmonics [10].
However, if the evaluation point x is inside the distributions of
the charge or current, on the other hand, the integral expressions,
Eqs. (1)–(4), suffer from the algebraic singularities. This becomes a
serious issue for extended distributions such as encountered in the
plasma physics.

Before going further, let us show a practical example. Fig. 1
shows the contour map on a meridional cross section of a hypo-
thetical charge/current distribution. It was designed to resemble
the poloidal mode equilibrium solution of the plasma current
distribution circulating in an ITER-like tokamak [11, Fig. 4]. Refer
to Section 4 later for the detailed model description.

Although the adopted model distribution is infinitely extended
in principle, it can be practically regarded to be finitely bounded
thanks to the Gaussian damping around the central ring. Inside this
practical boundary, the algebraic singularities appear everywhere.
Thus, E(x) and/or B(x) are hardly computed by evaluating the
integral forms by the existing quadrature techniques [12].

Therefore, a common practice has been solving Poisson’s equa-
tion for Φ(x) and A(x) [9, equations (1.28) and (5.28)], which are
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Fig. 1. Cross section ofmodel electric charge/current distribution. Shown is the con-
tour map on the meridional cross section of a hypothetical electric charge/current
distribution. The contours are drawn for the levels of the relative magnitude being
inverse powers of 2 as ρ/ρ0 = J/J0 = 2−n for n = 1, 2, . . . , 12. Although the
distribution is infinitely extended, it is practically bounded in a finite region thanks
to the Gaussian damping feature adopted in the model distribution.

Fig. 2. Bird’s-eye view of electrostatic field strength. Displayed is a bird’s-eye
view of E ≡ |E(x)|, the magnitude of the electrostatic field caused by the current
distribution depicted in Fig. 1.

nothing but the differential form of Gauss’ and Ampere’s laws,
respectively:

∇
2Φ = −ρ/ε0, (5)

∇
2A = −µ0J. (6)

These equations are elliptic type partial differential equations.
They are numerically solved by the finite or boundary element
methods of various kinds [13–17]. Refer to Bellina and Serra [18]
for a concise summary of the numerical approaches. Nonetheless,
the resulting formulation becomes cumbersome in general [19]
and suffers from the accuracy degrade [20]. This is especially true
if the boundary conditions are complicated [21–23].

Recently, we developed a numerical method to circumvent the
difficulties for the gravitational field of an axisymmetric mass

Fig. 3. Bird’s-eye viewofmagnetostatic field strength. Displayed is a bird’s-eye view
of B ≡ |B(x)|, the magnitude of the magnetostatic induction caused by the current
distribution depicted in Fig. 1.

density distribution [24]. It can be directly applicable to the com-
putation ofΦ(x) and E(x) as summarized in Appendix A. Therefore,
in this article, we adapt themethod to the computation of A(x) and
B(x) for arbitrary axisymmetric distribution of electric current. By
using the original and adapted methods, we prepared Figs. 2 and 3
showing the bird’s-eye views of E(x) and B(x) of the hypothetical
charge/current distribution specified in Fig. 1. As will be shown
later, these results are of the 9-digit accuracy, which is far more
than necessary.

Below, we (i) describe the adapted method in Section 2,
(ii) examine its computational accuracy and speed in Section 3, and
(iii) present its example in Section 4.

2. Method

Consider a general static and axisymmetric current distribution.
Adopt the cylindrical polar coordinate system, (R, z, φ). In this case,
the only non-zero components of J(x) and A(x) are their azimuthal
components:

J(R, z) ≡ Jφ(R, z), A(R, z) ≡ Aφ(R, z). (7)

By symmetry, A(x) vanishes on the z-axis as

A(0, z) = 0. (8)

Therefore, we scale it as

a(R, z) ≡ A(R, z)/R. (9)

Denote the lower and upper end point of the radial distribution by
RL(≥ 0) and RU(≤ +∞), respectively. For simplicity, we assume
that J(R, z) vanishes when z ≤ zL(R) or z ≥ zU(R) where zL(R)(≥
−∞) and zU(R)(≤ +∞) are certain functions of R. Then, a(R, z)
is expressed as a double integral convolving J(R, z) with Green’s
function as

a(R, z) =

∫ RU

RL

(∫ zU(R′)

zL(R′)
F
(
R′, z ′

; R, z
)
dz ′

)
dR′, (10)

where we abbreviate the integrand as
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)
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)
, (11)
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