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a b s t r a c t

In themesoscale simulations by the dissipative particle dynamics (DPD), themotion of a fluid is modelled
by a set of particles interacting in a pairwise manner, and it has been shown to be governed by the
Navier–Stokes equation, with its physical properties, such as viscosity, Schmidt number, isothermal
compressibility, relaxation and inertia time scales, in fact its whole rheology resulted from the choice
of the DPD model parameters. In this work, we will explore the response of a DPD fluid with respect to
its parameter space, where the model input parameters can be chosen in advance so that (i) the ratio
between the relaxation and inertia time scales is fixed; (ii) the isothermal compressibility of water at
room temperature is enforced; and (iii) the viscosity and Schmidt number can be specified as inputs.
These impositions are possible with some extra degrees of freedom in the weighting functions for the
conservative and dissipative forces. Numerical experiments show an improvement in the solution quality
over conventional DPD parameters/weighting functions, particularly for the number density distribution
and computed stresses.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD) has become a popular nu-
merical tool for probing the behaviour of complex fluids at a
mesoscopic length scale (e.g. polymeric/colloidal fluids), (see, e.g.,
[1–7]). In DPD, the fluid is replaced by a set of particles (called
DPD particles) undergoing Newton’s 2nd law of motion while
interacting in a pairwise manner. There are three typical types
of interaction forces between DPD particles, a conservative force
used to model local thermodynamics, a dissipative force used to
model viscous actions, and a random force to provide a balance to
the dissipative force, to maintain a constant specific kinetic energy
(defined as the Boltzmann temperature). All forces are pairwise
and centre-to-centre. DPD has a sound statistical foundation: it
is shown to satisfy conservations of mass and momentum in the
mean [8,9]. The input parameters of DPD include a noise level
σ , Boltzmann temperature kBT , repulsion strength aij, number
density n, particle’s mass m and cut-off radius rc (which may be
different for conservative and dissipative forces). It is noted that a
friction coefficient γ is derived from the noise level through the
fluctuation–dissipation theorem; it is not an independent input.
For the scaling in DPD, a physical system represented by Nphys
‘‘molecular particles’’ can be scaled (coarse-grained) at different
levels ν so that one deals with a smaller number of particles
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N = Nphys/ν in which ν is referred to as the coarse-grained
level [10]. Let ν (modelled by

{
N, kBT , n,m, rc, aij, γ

}
) and ν ′

(
{
N ′, kBT ′, n′,m′, r ′

c, a
′

ij, γ
′
}
) be two different coarse-grained lev-

els; both represent the same physical fluid. By constraining the
compressibility of the coarse-grained level fluids, it was shown
that if two different coarse-grained levels are related by (φ is the
scaling)

N ′
= φ−1N, kBT ′

= φkBT , n′
= φ−1n, (1)

then

m′
= φm, r ′

c = φ1/3rc, τ ′
= φ1/3τ ,

a′

ij = φ2/3aij, γ ′
= φ2/3γ , σ ′

= φ5/6σ ,
(2)

in which τ = rc
√
m/kBT and τ ′

= r ′
c
√
m′/kBT ′ are time scalings.

Under these scalings, one can show that the two coarse-grained
systems are equivalent (i.e. the scale free property). There are sev-
eral issues in the classical DPD method. The physical parameters
of the fluid to be modelled are not inputs of the DPD system, mak-
ing its parametric study difficult. Any change in the input model
parameters (e.g. the cut-off radius and Boltzmann temperature)
may result in a different fluid. Although the scheme defined by (1)
and (2) allows of the use of ν larger than 1, it does not provide an
appropriate link between the scaling and thermal fluctuations to
ensure that the fluctuations will reduce their magnitude when the
coarse-grained level increases. Also, the method always produces
a local pressure as a quadratic function of the number density
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(i.e. a fixed equation of state), and does not inherit the feature of
‘‘mesh/grid convergence’’ from conventional discretisation meth-
ods. There is still no formal way of deriving DPD from an atomistic
system for simple fluids (unbonded atoms). On the other hand, DPD
possesses an algorithmic simplicity and has the ability to model
many different complex fluids. Indeed, objects suspended in the
fluid can also be represented by DPD particles with appropriate
forms of interactions. For example, a solid particle can bemodelled
by a single DPD particle [5] or by a few constrained basic DPD
particles [7], allowing efficient simulations of particulate suspen-
sions [5,7,11], and of thixotropic materials exhibiting pseudo yield
stress behaviour [12] to be carried out.When the atoms are bonded
(e.g. complexmolecules like proteins), the coarse-grainedmapping
can be well defined and there have been many attempts in DPD
modelling to explore flows of such fluids [13,14]; here the DPD
method can be regarded as a bottom-up approach. In contrast
to DPD, the smoothed DPD (sDPD) method [15] is directly de-
rived from the Navier–Stokes equation with the inclusion of ther-
mal fluctuations (i.e. a top-down approach). Its formulation thus
combines the advantages of the Navier–Stokes equation (i.e. an
arbitrary equation of state, specified viscosity and convergence
property) and the DPD (i.e. mesoscopic description). Each sDPD
particle is defined with an explicit volume. For the scaling in sDPD,
it was shown in [16] that the deterministic part is scale invariant
and the thermal fluctuation part has a consistent scaling with the
volume of fluid particles. The reader is referred to [17] for a recent
comprehensive review of the field.

In DPDs, the compressibility of the model fluid is set to match
the compressibility of water at room temperature, resulting in a
constraint to the repulsion strength [18]

aij =
71.54kBT

nr4c
for 3D case, (3)

aij =
57.23kBT

nr3c
for 2D case, (4)

revealing the dependence of aij on kBT , n and rc . In [15], it was
shown that the friction coefficient can be chosen to fix the viscosity
of the system. In [18–22], the dynamic response of a DPD fluid,
measured by the Schmidt number (the ratio between momentum
diffusion (viscosity) and mass diffusivity) was discussed. In this
study, apart from the physical parameters just mentioned, another
dimensionless parameter, i.e. the ratio between the inertia and re-
laxation time scales of the DPD equations, will also be considered.
This parameter provides a direct link between the conservative and
dissipative forces; it governs how fast the system approaches the
statistical equilibrium state, together with the clustering of parti-
cles, and therefore an appropriate value of this ratio helps stabilise
the density distribution of DPD particles in the flow domain.

Wewill examine the response of a DPD fluid to a flow condition
in the following two forms. In the first, there are twodimensionless
quantities (time-scale ratio and isothermal compressibility) to be
imposed. The method here is basically the same as conventional
DPDs, except that its conservative force involves two free parame-
ters (instead of one). In the second, three dimensionless quantities
(time-scale ratio, isothermal compressibility and Schmidt num-
ber), and the viscosity are to be enforced. These simultaneous im-
positions are possible by modifying both the weighting functions
of the conservative and dissipative forces. Some simulations are
carried out in viscometric flows to illustrate the advantages of the
proposed DPD fluid.

The structure of the paper is organised as follows. In Section 2,
brief overviews of the DPD equations and their associated standard
input values are given. In Section 3, numerical issues concerning
the time scales in the DPD equations are discussed. In Section 4, the
response of the DPD system under constraints of satisfying some

given physical/dimensionless parameters of the fluid concerned is
examined. Section 5 gives some concluding remarks.

2. DPD model

2.1. Equations

InDPD, the fluid ismodelled by a systemof particles undergoing
Newton’s 2nd law of motion:

mir̈i = miv̇i =

N∑
j=1,j̸=i

(
Fij,C + Fij,D + Fij,R

)
, (5)

wheremi, ri and vi represent themass, position vector and velocity
vector of a particle i = 1, . . . ,N , respectively,N is the total number
of particles, the superposed dot denotes a time derivative, and the
three forces on the right side of (5) represent the conservative force
(subscript C), the dissipative force (subscript D) and the random
force (subscript R):

Fij,C = aijwCeij, (6)
Fij,D = −γwD

(
eij · vij

)
eij, (7)

Fij,R = σwRθijeij, wR =
√

wD, σ =

√
2γ kBT , (8)

where aij, γ and σ are constants reflecting the strengths of these
forces, wC , wD and wR configuration-dependent weighting func-
tions, eij = rij/rij a unit vector from particle j to particle i (rij = ri −
rj, rij = |rij|), vij = vi−vj a relative velocity vector, and θij aGaussian
white noise. It is noted that the random force is introduced in away
that satisfies the fluctuation–dissipation theorem.

2.2. Standard input values

Groot and Warren [18] suggested that the noise level σ can
be chosen as a balance between a fast simulation and a good
satisfaction of the specified Boltzmann temperature — a value of
3 was recommended (for kBT = 1, the corresponding γ is 4.5).
They also recommended that the repulsion strength aij is chosen
such that a DPD fluid has the same compressibility as water at
room temperature. This results in the constraints (3) and (4). As
discussed in Section 1, a relatively small number of particles can
be chosen to represent the fluid. In practice, the number density
n = 4 has been widely used.

For conventional DPDs, the weighting functions are given by

wC = 1 −
rij
rc

, (9)

wD =

(
1 −

rij
rc

)2

. (10)

It is noted that the exponent inwD is also often taken as 1/2 (rather
than 2), with a resulting improvement in the response of the fluid.
In this study, the value of 1/2 is employed for the conventional DPD.

3. Time scales

Let us focus on a tagged, but otherwise arbitrary DPD particle in
the system, and let τ be its relaxation time scale, τI its inertia time
scale and α the ratio of the two time scales.

τ = O
(γ

H

)
= O

(
γ rc
aij

)
, (11)

τI = O
(
m
γ

)
, (12)

α =
τ

τI
= O

(
γ 2rc
maij

)
, (13)
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