
Computer Physics Communications 221 (2017) 299–303

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A revision of the subtract-with-borrow random number generators✩

Alexei Sibidanov
University of Victoria, Victoria, BC, Canada V8W 3P6

a r t i c l e i n f o

Article history:
Received 30 May 2017
Received in revised form 17 August 2017
Accepted 4 September 2017
Available online 11 September 2017

Keywords:
Linear congruential generator
Subtract-with-borrow generator
RANLUX
GMP

a b s t r a c t

The most popular and widely used subtract-with-borrow generator, also known as RANLUX, is reimple-
mented as a linear congruential generator using large integer arithmetic with the modulus size of 576
bits. Modern computers, as well as the specific structure of the modulus inferred from RANLUX, allow
for the development of a fast modular multiplication — the core of the procedure. This was previously
believed to be slow and have too high cost in terms of computing resources. Our tests show a significant
gain in generation speedwhich is comparablewith other fast, high quality randomnumber generators. An
additional feature is the fast skipping of generator states leading to a seeding scheme which guarantees
the uniqueness of random number sequences.
Program summary/New version program summary
Program Title: RANLUX++
Licensing provisions: GPLv3
Programming language: C++, C, Assembler

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Thewell known Linear Congruential Generator (LCG) is a recur-
rent sequence of numbers calculated as follows:

xi+1 = (a · xi + c) modm, (1)

where x0 is the initial state or seed, a — the multiplier, c — the
increment and m — the modulus. The particular choice of the
parameters a, c and m with period q — the minimal number when
xq = x0, can be found in the literature [1]. Commonly used LCGs
are limited to m ≤ 264, and have poor statistical properties. Thus
they are not used for Monte-Carlo physical simulations.

This situation can be mitigated when m reaches several hun-
dreds or even thousand bits. The cost of the increased range of m
is to deal with arbitrary precision integer arithmetic which was
believed to be prohibitively expensive for practical purposes. In the
last two decades there has been tremendous progress in modern
central processor units (CPU) especially for personal computers
(PC) which can be employed for long arithmetic.

We have explored the possibility to use the long arithmetic
in LCG to improve the quality of generated random numbers and
found that, despite a substantial increase in calculations, the time
to generate a single random number is not proportionally risen.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

E-mail address: sibid@uvic.ca.

In fact for some parameters, the computational time decreased
compared to ordinary LCGs with machine word modulus size.

2. Subtract-with-borrow generator

At this point no specific constraints on a, c and m parameters
of LCG have been applied. As a good starting point we choose
the subtract-with-borrow generator first introduced in [2] and the
intimate connection with LCG has been shown as a part of the
period calculation. The algorithm has been extensively studied
in [3] to improve statistical quality of generated numbers. Based
on this study the generator RANLUX [4] was developed and now
it is widely used in physics simulations as well as in other fields
where random numbers with high statistical quality are required.
However the current method employed by RANLUX to achieve the
high quality makes it one of the slowest generators on the market.

The definition of the subtract-with-borrow generator is the
following: let b be some integer greater than 1 also called the
base and vector Y = (y1, . . . , yr , k) with the length r + 1, where
0 ≤ yi < b and k or the carry equals 0 or 1. Then define a recursive
transformation of the vector Yi with the rule:

Yi+1 =

{
(y2, . . . , yr , ∆, 0), if ∆ ≥ 0
(y2, . . . , yr , ∆+ b, 1), otherwise (2)

where ∆ = yr−s+1 − y1 − k and r and s also called the lags. As
shown in the work [5], this recursion is equivalent to LCG with the
modulus m = br − bs + 1, the multiplier a = m − (m − 1)/b and

http://dx.doi.org/10.1016/j.cpc.2017.09.005
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.09.005
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.09.005&domain=pdf
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:sibid@uvic.ca
http://dx.doi.org/10.1016/j.cpc.2017.09.005


300 A. Sibidanov / Computer Physics Communications 221 (2017) 299–303

Algorithm 1 Calculating remainder using only additions, subtrac-
tions and bit shifts for the modulusm = b24 − b10 + 1.
1: procedure Remainder(z) ▷ 0 ≤ z < b48
2: t0 ← [z0, . . . , z23] ▷ 0 ≤ t0 < b24
3: t1 ← [z24, . . . , z47] ▷ 0 ≤ t1 < b24
4: t2 ← [z38, . . . , z47] ▷ 0 ≤ t2 < b10
5: t3 ← [z24, . . . , z37] ▷ 0 ≤ t3 < b14
6: r ← t0 − (t1 + t2)+ (t3 + t2) · b10
7: c ← ⌊r/b24⌋ ▷ floor function rounds to−∞
8: r ← r − c ·m ▷ 0 < r < b24
9: return r

10: end procedure

c = 0 with the relation:

xi = x(Yi) ≡
r∑

j=1

yjbj−1 −
s∑

j=1

yr−s+jbj−1 + k. (3)

A reverse transformation to get a corresponding sequence of the
subtract-with-borrow generator requires to calculate the digits of
the fractional expansion in base b of xi/m:

xi/m = 0.yryr−1yr−2 . . . y1y0y−1 . . . ,

k0 = I[(y0 − ys + yr + 1)mod b = 0],
k = I[ys − y0 − k0 < 0], (4)

where the function I returns 1 if the condition in the brackets is
true and 0 otherwise.

In the RANLUX generator the lags r = 24 and s = 10 with the
base b = 224 are chosen among other suggested parameters in [2],
and thus the modulus m = b24 − b10 + 1 is a prime number and
the multiplier a = m− (m− 1)/b = b24− b23− b10+ b9+ 1. With
those parameters the period q is equal to (m− 1)/48.

Due to the selected base b the natural choice to keep the gen-
erator state is a vector of length 24 composed of 24-bit numbers.
This implementation uses the properties of the modulus m to
avoid long arithmetic calculations, and a single step equivalent
to one modular multiplication (a · xmodm) that requires only
subtraction of two 24-bit numbers and carry propagation. In the
original FORTRAN implementation, 24-bit numbers were stored as
floats to avoid at that time, a high cost integer-to-float conversion.

2.1. Remainder

The simple structure of the modulus m allows us to calculate
the remainder using only additions, subtractions and bit shifts. The
modulusm and thus the generator state x have size of 24·24 = 576
bits and fits into 9 64-bit machine words. The result of the product
z = a·x fits into 1864-bitmachinewordswhich canbe represented
as a 48 element array of 24-bit numbers: z = [z0, z1, . . . , z46, z47].
The number r obtained by the procedure shown in Algorithm 1 is
congruent to z modm and r < b24. Note the product c · m is also
only bit shifting due to the simple structure of m. The calculation
of c is a sum of carry bits of each arithmetic operation.

2.2. Skipping

Examining the result of a single step of Eq. (1) one can note
that the main part of the number xi is preserved in its successor
xi+1 which is just rotated by 24 bits. This strong correlation is the
reason of the poor statistical quality of the original subtract-with-
borrow generator [2]. The bright idea developed in [3] is to apply
the transformation (2) many times to break correlations between
nearby states before using the state for actual physical simulation.
The drawback of this method is obvious – all intermediate states

have to be explicitly calculated even if they are not needed. Despite
the single step being simple with small resource consumption,
good statistical quality requires several hundred steps thus in
total, the skipping requires a lot of time. This is a luxury to spend
resources and not use the results. Thus so-called luxury levelswere
introduced as aliases for howmany generated numbers have to be
wasted.

Using Eq. (1) we can efficiently skip numbers since all p recur-
rent steps collapse to a single multiplication:

a · (a · (. . .) modm) modm  
p times

= (ap modm) · xmodm

= A · xmodm, (5)

where the factor A ≡ (ap modm) is precomputed and thus the cost
to calculate the next state with or without skipping is the same.
Any state in the entire period q = (m − 1)/48 ≈ 10171 can be
calculated in nomore than 2×log2(q) ≈ 1140 longmultiplications
using fast exponentiation by squaring which takes order of tens of
µs on modern CPUs.

In Table 1 the precomputed values of A ≡ (ap modm) where the
values of p is taken from [4] are shown for illustrative purposes. In
the initial rows, long chains of 0 or 1 in binary representation are
clearly visible and this can be interpreted such that for each bit of
the state xi+p only a few bits of the state xi contributes. Even at
the highest luxury level 4 there are still some patterns observable
and a demanding user maybe not be completely satisfied. For such
user the two last rows would be more attractive especially since
it is for free! Such chaotic multipliers mean that if any single bit
of the state xi is changed in the next step the altered state will be
absolutely different from the unaltered one.

With explicit long multiplication, there is no need to keep the
multiplier A as a power of a, it can be adjusted to get the full period,
m−1. As an example the number (a2048+13modm) is a primitive
root modulo m and with this multiplier all numbers in the range
1 . . .m − 1 will appear in the sequence only once with any initial
x0 from the same range.

The fast skipping also provides a seeding schemewhich guaran-
tees non-colliding sequences of randomnumbers—what is needed
is to just skip a large enough sequence. This is suggested in [5] using
the seed number as a power of the multiplier:

xs = (an)s · x0 modm, (6)

where s is the seed, x0 is the initial state which is the same for all
seeds, xs is the starting state to deliver random numbers for the
seed s and n is the seed skipping factor to guarantee non-colliding
sequencies for any Monte Carlo simulation. Lets take n = 296

≈

1029 which is so big that for any modern computer the required
time to visit all states within the range exceeds the age of the
Universe, even if it can generate a new state on every CPU clock
cycle. In this case the maximum seed number is s < q/n ≈ 2474

≈

10143.

3. Implementation

The core procedure for efficient implementation of LCG is fast
long multiplication. This provides the infrastructure to deliver
randomnumbers in an efficient aswell as convenient form tousers.
Programming languages such as C++, C or FORTRAN which are
usually used in Monte Carlo physics simulations, have no native
support of the long arithmetic despite all desktop grade CPUs
providing hardware instructions suitable for it. The support of long
arithmetic is provided by external libraries. We choose the GMP
library [6] for proof of concept. This library is highly optimized
for basic arithmetic operations with long numbers and supports a
large number of CPU architectures. It was found that GMP is a great



Download English Version:

https://daneshyari.com/en/article/6919245

Download Persian Version:

https://daneshyari.com/article/6919245

Daneshyari.com

https://daneshyari.com/en/article/6919245
https://daneshyari.com/article/6919245
https://daneshyari.com

