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a b s t r a c t

In this paper, a semi-implicit gas-kinetic scheme (SIGKS) is derived for smooth flows based on the
Bhatnagar–Gross–Krook (BGK) equation. As a finite-volume scheme, the evolution of the average flow
variables in a control volume is under the Eulerian framework, whereas the construction of the numerical
flux across the cell interface comes from the Lagrangianperspective. The adoption of the Lagrangian aspect
makes the collision and the transport mechanisms intrinsically coupled together in the flux evaluation.
As a result, the time step size is independent of the particle collision time and solely determined by the
Courant–Friedrichs–Lewy (CFL) condition. An analysis of the reconstructed distribution function at the
cell interface shows that the SIGKS can be viewed as a modified Lax–Wendroff type scheme with an
additional term. Furthermore, the addition term coming from the implicitness in the reconstruction is
expected to be able to enhance the numerical stability of the scheme. A number of numerical tests of
smooth flows with low and moderate Mach numbers are performed to benchmark the SIGKS. The results
show that the method has second-order spatial accuracy, and can give accurate numerical solutions in
comparison with benchmark results. It is also demonstrated that the numerical stability of the proposed
scheme is better than the original GKS for smooth flows.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, kinetic methods have drawn particular
attention as newly-developing computational fluid dynamics
(CFD) technology. Unlike the conventional CFD methods based on
direct discretizations of the Navier–Stokes (NS) equations, kinetic
methods are based on kinetic theory or microparticle dynamics,
which provides theoretical connection between hydrodynamics
and the underlying microscopic physics, and thus yields efficient
tools for multiscale flows. Up to date, a variety of mesoscopic
methods have been proposed, such as the lattice gas cellular
automata (LGCA) [1], the lattice Boltzmann equation (LBE) [2,3],
the gas-kinetic scheme (GKS) [4–11], and the smoothed particle
hydrodynamics (SPH) [12], among which the LBE and GKS are
specifically designed for CFD. The kinetic nature of the LBE and
GKS has led to many distinctive advantages that distinguish them
from the classical CFD methods. Specifically, for the LBE method,
the convection operator (or streaming process) in phase space is
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linear, which is same as the Boltzmann equation and contrasts
with the nonlinear convection terms in classical CFDmethods [13];
in addition, the pressure in LBE methods is calculated using an
equation of the state, whereas in classical CFD methods, a Poisson
equationwith velocity strains should be solved to get the pressure,
which often produces numerical difficulties requiring special
treatment, such as iteration or relaxation [13]. Furthermore,
the kinetic nature of LBE guarantees the intrinsic parallelism
feature of the LBE, which makes it more straightforward than
the classical CFD methods to implement the Message Passing
Interface (MPI) and Graphics Processing Unit (GPU) to improve
the computational efficiency [13]. Different from the LBEmethods
aiming to solve nearly incompressible flows, the GKS is designed
mainly for compressible flows, especially shock problems that
involve both discontinuous and continuous regimes, which is
the numerical challenge for the classical CFD methods. In GKS,
by constructing the interfacial fluxes based on certain kinetic
equations, a smooth transition between the upwind and central
differencemechanics can be realized, which ensures the capability
of the scheme for capturing shock discontinuity and smooth flows
simultaneously [14,15]. Particularly, the GKS for the Navier–Stokes
solutions has been well developed [4,7,8,16–19], and successfully
applied to a variety of flow problems [20–23].

As a kind of finite-volume scheme, the key ingredient in GKS
for NS solutions is to construct the flux at the cell interface. With
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different approaches, several kinetic schemes have been developed
based on the kinetic theory, such as the Kinetic Flux Vector Split-
ting (KFVS) [7,8,24] scheme based on the collisionless Boltzmann
equation and the GKS based on the Bhatnagar–Gross–Krook (BGK)
equation where the particle collisions are considered in the con-
struction of the numerical flux. It is shown that the GKS meth-
ods avoid the ambiguity of adding ad hoc ‘‘collisions’’ for the KFVS
to reduce the numerical dissipations [7,8]. Among the BGK-type
schemes, the gas-kinetic BGK scheme for the NS solutions has been
well developed [4], and has been successfully applied for the con-
tinuum flow simulation from low-speed incompressible to hyper-
sonic compressible flows [16,17,25].

In this paper, we present a semi-implicit gas-kinetic scheme
(SIGKS), as an alternative BGK-type scheme for smooth flows. The
most distinguished feature of the proposed scheme is that the
construction of the flux at the cell interface is based on the discrete
characteristic solution of the BGK equation, which comes from the
Lagrangian aspect. This approach results in the particle collision
and transport mechanisms coupled together within a time step,
whichmakes the new scheme exhibited low numerical dissipation
and the time step decoupled from the particle collision time.
Furthermore, the flux is evaluated in an implicit manner in the
scheme, which is expected to have improved numerical stability
in comparison with the original GKS method. A set of numerical
simulations are carried out and to verify the present scheme as a
feasible NS solver.

The rest of the article is organized as follows. The semi-implicit
gas-kinetic scheme is derived in Section 2; analysis of numerical
flux error of the SIGKS and comparison with the original GKS are
made in Section 3; numerical tests aremade in Section 4 to validate
the performance of the new scheme, and finally some conclusions
are drawn in Section 5.

2. Semi-implicit gas-kinetic scheme

The Boltzmann equation expresses the behavior of a many-
particle kinetic system in terms of the evolution equation of the
singlet gas distribution function. One of its simplified version is the
BGK model [26],

∂ f
∂t

+ ξ · ∇f = Ω ≡
g − f
τ

, (1)

where f is the gas distribution function and g is the equilibrium
state approached by f . Both f and g are functions of space x,
time t , particle velocities ξ, and internal variable η. The particle
collision time τ is related to the viscosity and the heat conduction
coefficients. The equilibrium state is a Maxwellian distribution,

g =
ρ

(2πRT )(D+K)/2
exp


−
(ξ − u)2 + η2

2RT


(2)

where D is the spatial dimension, K is the internal degree of
freedom, ρ is the density, u is the macroscopic velocities, R is
the gas constant, and T is the gas temperature. The connection
between the distribution function f and conservative variableW is

W =


ρ
ρu
ρϵ


=


ψfdΞ , (3)

and the fluxes are computed as

F =

Fρ
Fρu
Fρϵ


=


ξψfdΞ , (4)

where dΞ = dξdη is the volume element in phase space with
dη = dη1dη2 . . . dηK , and ψ is given by

ψ = [ψ1, ψ2, ψ3]
T

=


1, ξ,

1
2


ξ2 + η2

T
.

Since mass, momentum and energy are conserved during particle
collisions, f and g satisfy the conservation constraint
(g − f )ψdΞ = 0, (5)

at any point in space and time.
In order to develop a finite volume scheme, the computational

domain is first divided into a set of control volumes. Then, we
multiply ψ on both sides of Eq. (1), and integrate it in phase space
and physical space over a control volume Vi from tn to tn+1, due to
the conservation of conservative variables during particle collision
process, the update of the conservative variables at the center of
the Vi becomes

Wi
n+1

= Wi
n
−
∆t
|Vi|

F n+1/2, (6)

where

F n+1/2
=

 
∂Vi
(ξ · n)ψf (x, ξ, tn + h) dSdΞ (7)

is the macroscopic flux across the cell interface and h = ∆t/2. The
mid-point rule is employed in the time domain integration of the
convection term.

The key ingredient in updating the averaged conservative
variables according to Eq. (6) is to evaluate the flux F n+1/2,
which can be solely determined by the gas distribution function
f (x, ξ, tn + h). Here the Lagrangian perspective is applied in the
construction of f (x, ξ, tn + h): we integrate Eq. (1) within a half
time step along the characteristic line with the end point (xb)
located at the cell interface, and use the trapezoidal rule to evaluate
the collision term,

f (xb, ξ, tn + h)− f (xb − ξh, ξ, tn)

=
h
2
[Ω(xb − ξh, ξ, tn)+Ω(xb, ξ, tn + h)] . (8)

Approximating f (xb − ξh, ξ, tn) and g(xb − ξh, ξ, tn) by their
Taylor expansions around xb, we can rewrite Eq. (8) that

f (xb, ξ, tn + h) = f (xb, ξ, tn)− hξ · ∇f (xb, ξ, tn)

+
h
2
[Ω(xb, ξ, tn)− hξ · ∇Ω(xb, ξ, tn)

+Ω(xb, ξ, tn + h)] + O(h2). (9)

Since the present scheme is targeting the numerical NS
solutions in a resolved dissipative region, the Chapman–Enskog
expansion can be employed to approximate the distribution
function. Then, two approximations can be applied to Eq. (9). First,
f is approximated by its first-order Chapman–Enskog expansion,
f ≈ g −τ(gt + ξ ·∇g), and the second approximation is that∇f ≈

∇g , which is consistent with the first-order Chapman–Enskog
expansion and includes only the first-order derivatives of the
hydrodynamic variables ρ, u, and T . Up to this point, the
distribution function at the cell interface can be approximated as

f (xb, tn + h) =


2τ

2τ + h
−

2τ − h
2τ + h

τA − τξ · a

g(xb, tn)

+
h

2τ + h
g(xb, tn + h), (10)
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