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a b s t r a c t

Nonclassical quadratures based on a new set of half-range polynomials, Tn(x), orthogonal with respect
to w(x) = e−x−b/

√
x for x ∈ [0, ∞) are employed in the efficient calculation of the nuclear fusion

reaction rate coefficients from cross section data. The parameter b = B/
√
kBT in the weight function is

temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence
relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define
in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are
calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which
the astrophysical function can be expressed as a lower order polynomial in the relative energy, the
convergence of the thermal average of the reactive cross section with this nonclassical quadrature is
extremely rapid requiring in many cases 2–4 quadrature points. The results are compared with other
libraries of nuclear reaction rate coefficient data reported in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The thermal reaction rate coefficients for nuclear reactions are
calculated from the appropriate collision cross sections averaged
over a Maxwellian relative energy distribution. The development
of nuclear fusion reactors requires the temperature dependence of
nuclear reaction rate coefficients [1,2] for the isotopes of hydro-
gen and helium, namely D(d, p)T, D(d, n)3He, T(d, n)4He, 3He(d,
p)4He and other reactions [3]. These reactions are also the basis
for models of primordial or big bang nucleosynthesis [4–6] in con-
junction with constraints imposed by observations of the cosmic
microwave background [7]. These kinetic data are also required to
model stellar astrophysics such as the Sun andother stars including
supernovae [8,9]. There exist several different libraries of reaction
rate coefficient data that include empirical fits of rate coefficients
versus temperature [4,10,11] as well as tables that require inter-
polations [12,13] and other databases [14]. An efficient and accu-
rate representation of the temperature dependence of the nuclear
reaction rate coefficients from cross section data is an important
endeavor.

The objective of this paper is to report on a novel efficient nu-
merical quadrature to calculate exactly the temperature depen-
dence of the nuclear rate coefficients fromgiven nonresonant cross
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section data. Specific nonclassical quadratures have been used
in numerous pseudospectral solutions of integral and differential
equations in numerous fields and in particular in kinetic theory
[15,16] and quantum mechanics [15,17–23]. There have also been
many discussions of quadrature rules [24,25] and several methods
specifically designed for applied problems [26].

The nuclear reactive cross sections are generally expressed in
terms of the astrophysical factor, S(E), which is most often written
as a low order power series in the relative energy, E. The method
proposed in this paper is based on the exact evaluation of the rate
coefficient, k(T ), defined by Eq. (2), with a quadrature defined by
a set of nonclassical polynomials orthogonal with respect to the
weight function, w1(x) = exp(−x − b/

√
x), where b = B/

√
kBT ,

B is the Gamow factor and kB is the Boltzmann constant [2].
This quadrature provides an exact result for nonresonant nuclear
reactions with S(E) expressed as a lower order polynomial in the
relative energy E. The weight function w1(x) can be recognized
as the integrand in the Maxwellian average of the cross section
for which S(E) = s0 is independent of E. An often used
approximation in this simplest case is to expand the argument
of the exponential in w1(x) up to quadratic terms which gives a
Gaussian approximation to the integrand which can be integrated
analytically. This provides a first order estimate for the reactive
rate coefficient [2,22].

For S(E) =
N

n=0 snE
n, the rate coefficient, k(T ), can be

expressed in terms of the moments of w1(x). With the asymptotic
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expansion of these moments in terms of T
1
3 [27], the rate

coefficient can be expressed as

k(asymp)(T ) ≈ A1e−A2/T
1
3


1 +

M
m=1

CmT
m
3


T

2
3 (1)

where the coefficients A1, A2 and Cm are calculated from the sn
coefficients. This analytic expression for kasmyp(T ) is often used
but with the coefficients determined with a least squares fitting
procedure so that the final results are not exact [4,6,28]. An
alternate approach is based on the asymptotic expansion of the
moments of the weight function, Eq. (6), in powers of 1/τ where
τ = 3( b

2 )
2
3 as defined in Section 2. The coefficients in Eq. (1)

are then evaluated in a theoretical manner [27,29]. Any round-
off errors that may occur in the use of Eq. (1) can be significantly
reduced if kasymp(T ) is evaluated as a nested sum.

The new nonclassical quadrature based on the weight function
w1(x), x ∈ [0, ∞) is presented in Section 2. Section 3 provides
a comparison of the quadrature evaluated rate coefficients with
analytic fits reported in the literature, such as Eq. (1), as well as
with other libraries of reaction rate data. Section 4 provides a
summary of the results.

2. A quadrature based on nonclassical polynomials

The reaction rate coefficient, k(T ), versus temperature, T , is
given by the average of the reactive cross section, σ(E), with the
Maxwellian distribution of relative energies, that is,

k(T ) =


8

πµ

1
(kBT )3/2


∞

0
Ee−E/kBTσ(E)dE. (2)

The reactive cross sections are often written in terms of the
astrophysical factor [2], S(E), and the cross section is given by

σ(E) =
S(E)

E
e−B/

√
E, (3)

where B = 31.29106Z1Z2
√

µ in
√
keV is the Gamow factor [2],

Z1 and Z2 denote the nuclear charges of the two nuclei and
µ = m1m2/(m1 + m2) is the reduced mass in atomic mass
units (amu) of the reacting nuclei [1,2]. There are numerous
analytical representations of the energy dependence of S(E) for
different nuclear reactions [3,4,10]. For nonresonant reactions, the
astrophysical factor can be represented as a power series in the
relative energy E, that is,

S(E) =

N
n=0

snEn. (4)

With the substitution of Eq. (4) into Eq. (2), the rate coefficient can
be written as

k(T ) =


8

πµkBT

 N
n=0

sn(kBT )nIn(b). (5)

With the transformation to reduced energy, x = E/kBT , the
dimensionless integrals in Eq. (5) are given by

In(b) =


∞

0
xne−x−b/

√
xdx, (6)

where b = B/
√
kBT is temperature dependent.

A low order estimate of the rate coefficient is obtained for
constant S(E) = s0, for which the integrand in Eq. (6) with n =

0 exhibits an extremum. The standard first order approximation
for I0(b) [2,22,30] involves the expansion of the argument of the

exponential, f (x) = x + b/
√
x, up to quadratic terms about the

position of the maximum evaluated as xm = (b2/4)
1
3 . In terms of

τ = 3( b
2 )

2
3 = 3( B

2
√
kB

)
2
3 T−

1
3 , this first order approximation yields

a Gaussian integrand and I0(b) ≈ 2
√

πτe−τ/3. The rate coefficient
with this approximation is

k(T ) ≈ A1e−A2/T
1
3
/T

2
3 , (7)

where

A1 =
2s0
3


8A2

µkBT
, (8)

A2 = 3


B
√
kB

 2
3

.

The peak of the Gaussian approximation to f (x) occurs at the
dimensional energy referred to as the Gamow energy or the
Gamow peak given by EG = (BkBT/2)

2
3 .

The principal objective of this paper is to introduce a numerical
evaluation of integrals of the form in Eq. (2) based on a quadrature
defined in terms of nonclassical polynomials, Tn(x), orthogonal
according to

∞

0
e−x−b/

√
xTn(x)Tm(x)dx = δnm. (9)

The weight function w1(x) = e−x−b/
√
x is precisely the integrand

for I0(b) in Eq. (6). With the quadrature to be defined, we will
show that the integrals In(b) can be computed exactly with (N +

1)/2 quadrature points and weights. Since S(E) for many nuclear
reactions is a low order polynomial, a very small number of
quadrature points and weights will be required.

The nonclassical Tn(x) polynomials satisfy a general three term
recurrence relation

xTn(x) =


βn+1Tn+1(x) + αnTn(x) +


βnTn−1(x) (10)

where αn and βn are the recurrence coefficients [22,31]. The
quadrature points and weights in the quadrature algorithm

∞

0
e−x−b/

√
xF(x)dx ≈

N
i=1

wiF(xi) (11)

are computed from the diagonalization of the N × N Jacobi
matrix [22], given by

J =


α0


β1 0 0 .... 0

β1 α1


β2 0 .... 0
0


β2 α2


β3 .... 0

...
...

...
... ....

...

0 0 0 0


βN αN

 . (12)

The Jacobimatrix can be recognized as thematrix representation of
the coordinate operator. The quadrature points are the eigenvalues
of J and the weights are obtained from the first component of the
ith eigenvector [22,32,33]. The quadrature algorithm, Eq. (11), is
exact with N quadrature points for F(x) a polynomial of degree
2N − 1 [22,32,33].

If the three term recurrence relation, Eq. (10), is multiplied by
Tn(x) and integrated, the orthogonality condition, Eq. (9), gives

αn =


∞

0
e−x−b/

√
xxT 2

n (x)dx. (13)

The recurrence relation for the monic polynomials, with the
coefficient of xN set to unity is

qn+1(x) = (x − αn)qn(x) − βnqn−1(x), (14)
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