
Computer Physics Communications 203 (2016) 45–52

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Efficient neighbor list calculation for molecular simulation of colloidal
systems using graphics processing units
Michael P. Howard a, Joshua A. Anderson b, Arash Nikoubashman a,1, Sharon C. Glotzer b,c,
Athanassios Z. Panagiotopoulos a,∗

a Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
b Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
c Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 24 August 2015
Received in revised form
1 February 2016
Accepted 4 February 2016
Available online 3 March 2016

Keywords:
Molecular simulation
Colloid
Size disparity
Non-uniform
Neighbor list
Bounding volume hierarchy
GPU

a b s t r a c t

We present an algorithm based on linear bounding volume hierarchies (LBVHs) for computing neighbor
(Verlet) lists using graphics processing units (GPUs) for colloidal systems characterized by large size
disparities.We compare this to a GPU implementation of the current state-of-the-art CPU algorithmbased
on stenciled cell lists. We report benchmarks for both neighbor list algorithms in a Lennard-Jones binary
mixture with synthetic interaction range disparity and a realistic colloid solution. LBVHs outperformed
the stenciled cell lists for systems with moderate or large size disparity and dilute or semidilute fractions
of large particles, conditions typical of colloidal systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There has been a steady growth of computational resources
available to the scientific community [1]. The fastest supercom-
puters today offer petascale performance through hundreds of
thousands of CPU cores with dedicated coprocessors or graphics
processing units (GPUs) as accelerators. Whereas in the past most
atomistic molecular simulations were restricted to no more than
a few hundred particles over nanosecond time scales, modern
computing architectures and simulation techniques have enabled
simulations of millions of particles [2] and up to millisecond [3]
time scales. In particular, molecular dynamics (MD) methods have
emerged as powerful tools for large-scale molecular simulations
for two important reasons: (1) the MD algorithm is highly paral-
lel and so easily adapted for supercomputing, and (2) many highly
optimized and flexible simulation packages are readily available to
researchers. In the past two decades, significant time and resources

∗ Corresponding author.
E-mail address: azp@princeton.edu (A.Z. Panagiotopoulos).

1 Present address: Institute of Physics, Johannes Gutenberg University Mainz,
Staudingerweg 7, 55128 Mainz, Germany.

have been devoted to the development of such MD packages, in-
cluding GROMACS [4], LAMMPS [5], and NAMD [6], among many
other commercial and open-source options. These packages pro-
vide robustMD implementations formassively parallel computers.
A more recent addition is HOOMD-blue [7], which was developed
and optimized for GPUs, and has a single GPU performance one or-
der of magnitude faster than a single CPU [8].

Despite these advances in hardware and software, MD simula-
tions of soft matter remain challenging because there is typically a
large disparity in length and time scales between components. For
example, colloidal particles (nanometers to micrometers in diam-
eter) in solution are separated in size by several orders of magni-
tude from an atomistic description of the molecular solvent. MD
simulations retaining full atomistic detail of the solvent can be-
come intractable because many solvent atoms must be included
to model only a few colloidal particles. Moreover, the time scales
associatedwith the degrees of freedom of the solvent are generally
much shorter than the relatively slowmotion of the larger colloids.
Thismeans that these simulations require very shortMD time steps
to faithfully capture the dynamics of the solvent, and many such
steps are required to observe any appreciable dynamics of the col-
loids.

The MD algorithm in its simplest form consists of two
basic steps: (1) calculation of the forces on all particles and

http://dx.doi.org/10.1016/j.cpc.2016.02.003
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.02.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.02.003&domain=pdf
mailto:azp@princeton.edu
http://dx.doi.org/10.1016/j.cpc.2016.02.003


46 M.P. Howard et al. / Computer Physics Communications 203 (2016) 45–52

(2) integration of Newton’s equations of motion. The force
calculation is by far the most computationally expensive part of
the MD algorithm. In particular, the calculation of nonbonded
pair interactions between particles typically dominates the force
calculation. In the simplest MD implementation, the forces
between all possible pairs of the N total particles in the simulation
are evaluated, leading to O(N2) scaling.

To reduce the number of force pairs evaluated, the interaction
potential between particles of types i and j is typically truncated at
a radial cutoff distance rij where the force has decayed sufficiently
so that truncation does not significantly influence the properties
of interest. A neighbor (Verlet) list storing a list of particles that
are within the cutoff is then created for each particle [9]. The pair
forces only need to be computed for the particles in the neighbor
list, which is a small subset of N for each particle. The neighbor list
can be rebuilt less frequently than every MD step if a small buffer
width is added to rij, tradingwasted pair force distance checkswith
the frequency of rebuilding the neighbor list, which accelerates the
calculation compared to evaluating all possible force pairs at every
step. However, the force calculation is ultimately still O(N2) if the
neighbor list is built by simply checking the distances between all
particle pairs.

Acceleration structures reduce the computational cost of
building the neighbor list by restricting the neighbor search for
each particle to a subset of the particles in the system. The most
commonly employed acceleration structure in general-purpose
MD codes is the cell list. A typical cell list spatially bins particles
into uniformly sized cells in O(N) [9]. Distance checks must only
be performed for particles that are in neighboring cells, effectively
reducing the cost of computing the neighbor list to O(Nm), where
m is the average number of particles in a cell (usually m ≪ N).
The cell width is typically determined by the largest cutoff radius
between all pairs so that 27 cells must be checked for each particle
in three-dimensional simulations.

The cell list is extremely efficient in simulations that have
nearly equal pair force cutoffs and a uniform particle distribution
between the cells. However, performance degrades significantly in
colloidal systems due to the large disparity in interaction lengths.
Many unnecessary distance checks are performed for particles
with short interaction ranges when the cell width is based on the
largest cutoff, schematically illustrated in Fig. 1. The cell width is
based on the largest cutoff rBB. The solvent particles with cutoff
rAA must check the same number of cells (particles) as the colloids
with the larger cutoff rBB. However, unlike the colloids, the solvent
particles reject many of these particles from their neighbor lists.

A general solution to this problem has been successfully
deployed in LAMMPS [10]. The standard cell list is extended so that
the cell width is based on the shortest cutoff and each particle type
searches a different ‘‘stencil’’ of adjacent cells based on the largest
cutoff radius. Distances to each cell in the stencil are precomputed
so that a particle distance check can be skipped for many of the
searched particles. This stenciled cell list method was reported
to give speedups of nearly 100× for a colloidal solution with a
20:1 ratio in diameter compared to a standard cell list in LAMMPS.
However, simulations of colloidal systems with such large size
disparity are still extremely computationally intensive, requiring
hundreds of CPU cores to obtain reasonable performance [10].

In this article, we explore two parallel algorithms for efficiently
building neighbor lists in colloidal systems on the GPU: one
based on stenciled cell lists and one based on a hierarchical tree
acceleration structure. To our knowledge, the stenciled cell list
algorithm [10] has not been previously implemented and tested on
the GPU. In graphics processing, hierarchical tree data structures
are used for performance-critical neighbor searches [11]. One
such tree structure, the bounding volume hierarchy (BVH), has
previously been used to generate neighbor lists between large

Fig. 1. Cell list needed to determine the neighbors of solvent (A) and colloid
(B) particles when the bin size is based on the largest cutoff length rBB . The pair
interaction ranges are illustrated for each particle type. The shaded areas indicate
the cells that each particle must search.

macromolecules on the CPU [12,13]. However, these prior studies
did not extend their approach to general-purpose molecular
simulations, did not address size disparity between different
particle types, and did not discuss implementation of the algorithm
on GPUs.

In Section 2,we present and compare parallel algorithms for the
stenciled cell list and BVH. Technical details of the implementation
of these algorithms within the HOOMD-blue simulation package
are described in Section 3. Systematic performance benchmarks for
the algorithms are reported in Section 4.

2. Algorithms

2.1. Stenciled cell list

The stenciled cell list [10] is a straightforward extension of
the standard cell list, and is illustrated in Fig. 2. All particles are
binned into a cell list of nominal cell width ∆bin. The maximum
cutoff radius is determined for each particle type, and a stencil is
computed from the list of offsets to neighboring cells that have
a nearest separation distance within that cutoff. For example, the
solvent particle has a stencil radius corresponding to rAB, and the
list of offsets in 2D is (0, 0), (+1,+2), (+2,−1), . . .. The colloid
has a stencil radius rBB. All the cells included in the stencils are
shaded and outlined with a solid line.

Because the stencil size is set by themaximum cutoff radius per
type, many particles that will not be included in the neighbor list
must still be iterated over for shorter rij. In Fig. 2, both the solvent
particle and colloid have the same effective stencil size for the
given cutoffs. However, extra distance checks can be eliminated
by precomputing the minimum distance to each cell in the stencil.
For a particle of a given type, if the minimum distance to the
nearest cell is greater than the pairwise cutoff, that particle can
be skipped without distance checking or reading its position. The
solvent particle only needs to distance check particles of type A
inside the cells indicated by the dashed line corresponding to rAA,
and all particles of type A can be skipped in the other cells in the
stencil.

The neighbor list is then built as described in Algorithm 1. A
given particle looks up the appropriate stencil of cells based on
its particle type (line 4). Each member of the stencil is iterated
over (line 5), and each offset from the stencil is converted into a
neighbor cell based on the current cell of the particle, including



Download English Version:

https://daneshyari.com/en/article/6919300

Download Persian Version:

https://daneshyari.com/article/6919300

Daneshyari.com

https://daneshyari.com/en/article/6919300
https://daneshyari.com/article/6919300
https://daneshyari.com

