
Computer Physics Communications 203 (2016) 53–65

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

High performance Python for direct numerical simulations of
turbulent flows
Mikael Mortensen ∗, Hans Petter Langtangen
University of Oslo, Moltke Moes vei 35, 0851 Oslo, Norway
Center for Biomedical Computing at Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway

a r t i c l e i n f o

Article history:
Received 6 October 2015
Received in revised form
5 February 2016
Accepted 9 February 2016
Available online 26 February 2016

Keywords:
CFD
Python
Cython
DNS
Slab
Pencil
FFT
MPI

a b s t r a c t

Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid
dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching
implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper
we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of
C++ for thousands of processors and billions of unknowns. We also describe a version optimized through
Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the
mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and
benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able
to show very good scaling up to several thousand cores.

A very important part of the implementation is the mesh decomposition (we implement both slab
and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and
FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any
other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI
for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh
decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is
found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh
decomposition 7 lines of code is required to execute a transform.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Direct Numerical Simulations (DNS) is a term reserved for com-
puter simulations of turbulent flows that are fully resolved in both
time and space. DNS are usually conducted using numerical meth-
ods of such high order and accuracy that numerical dispersion
and diffusion errors are negligible compared to their actual phys-
ical counterparts. To this end, DNS has historically been carried
out with extremely accurate and efficient spectral methods, and
in the fluid dynamics community DNS enjoys today the same sta-
tus as carefully conducted experiments. DNS can provide detailed
and highly reliable data not possible to extract from experiments,
which in recent years have driven a number of discoveries regard-
ing the very nature of turbulence. The present paper presents a

∗ Corresponding author at: University of Oslo, Moltke Moes vei 35, 0851 Oslo,
Norway.

E-mail address:mikaem@math.uio.no (M. Mortensen).

new, computationally attractive tool for performing DNS, realized
by recent programming technologies.

Because of the extremely heavy number crunching implied
by DNS, researchers aim at highly optimized implementations
running on massively parallel computing platforms. The largest
known DNS simulations performed today are using hundreds
of billions of degrees of freedom, see, e.g., [1,2]. Normally, this
demands a need for developing tailored, hand-tuned codes inwhat
we here call low-level languages: Fortran, C or C++ (despite the
possibility for creating high-level abstractions in Fortran 90/2003
andC++, the extremeperformancedemands ofDNS codes naturally
leads to minimalistic use of classes and modules). Few DNS codes
are openly available and easily accessible to the public and the
common fluid mechanics researcher. Some exceptions are hit-3d
(Fortran90) [3], Philofluid (Fortran) [4], Tarang (C++) [5], and Turbo
(Fortran90) [6]. However, the user interfaces to these codes are not
sophisticated and user-friendly, and it is both challenging and time
consuming for a user to modify or extend the codes to satisfy their
own needs. This is usually the nature of codes written in low-level
languages.

http://dx.doi.org/10.1016/j.cpc.2016.02.005
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.02.005
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.02.005&domain=pdf
mailto:mikaem@math.uio.no
http://dx.doi.org/10.1016/j.cpc.2016.02.005


54 M. Mortensen, H.P. Langtangen / Computer Physics Communications 203 (2016) 53–65

It is a clear trend in computational sciences over the last two
decades that researchers tend to move from low-level to high-
level languages like Matlab, Python, R, and IDL, where prototype
solvers can be developed at greater comfort. The experience
is that implementations in high-level languages are faster to
develop, easier to test, easier to maintain, and they reach a much
wider audience because the codes are compact and readable.
The downside has been the decreased computational efficiency of
high-level languages and in particular their lack of suitability for
massively parallel computing. In a field like computational fluid
dynamics, this argument has been a show stopper.

Python is a high-level language that over the last two decades
has grown very popular in the scientific computing community. A
wide range of well established, ‘‘gold standard’’ scientific libraries
in Fortran and C have been wrapped in Python, making them
directly accessible just as commands in MATLAB. There is little
overhead in calling low-level Fortran and C/C++ functions from
Python, and the computational speed obtained in a few lines of
code may easily compete with hundreds of compiled lines of
Fortran or C code. It is important new knowledge in the CFD
community if flow codes can be developed with comfort and ease
in Python without sacrificing much computational efficiency.

The ability of Python to wrap low-level, computationally highly
efficient Fortran and C/C++ libraries for various applications is
today well known, appreciated, and utilized by many. A lesser
known fact is that basic scientific Python modules like NumPy
(cf. [7,8]), used for linear algebra and array manipulations, and
MPI for Python (mpi4py) [9], which wraps (nearly) the entire
MPI library, may be used directly to develop, from scratch, high
performance solvers that run at speeds comparable to the very
best implementations in low-level codes. A general misconception
seems to be that Python may be used for fast prototyping and
post-processing, as MATLAB, but that serious high-performance
computing on parallel platforms requires reimplementations in
Fortran, C or C++. In this paper,we conquer thismisconception: The
only real requirement for developing a fast scientific Python solver
is that all array manipulations are performed using vectorization
(that calls underlying BLAS or LAPACK backends or compiled
NumPy ufuncs) such that explicit for loops over long arrays in
Python are avoided. The MPI for Python module in turn provides
a message passing interface for NumPy arrays at communication
speeds very close to pure C code.

There are already several examples on successful use of
Python for high-performance parallel scientific computing. The
sophisticated finite element framework FEniCS [10] is written
mainly in C++, butmost application developers are writing FEniCS-
based solvers directly in Python, never actually finding themselves
in need of writing longer C++ code and firing up a compiler.
For large scale applications the developed Python solvers are
usually equally fast as their C++ counterparts, because most of
the computing time is spent within the low-level wrapped C++
functions that perform the costly linear algebra operations [11].
GPAW [12] is a code devoted to electronic structure calculations,
written as a combination of Python and C. GPAW solvers written in
Python have been shown to scale well for thousands of processors.
The PETSc project [13] is a major provider of linear algebra to the
open source community. PETSc was developed in C, but through
the package PETSc for Python (petsc4py) almost all routines may
be set up and called from Python. PyClaw [14] is another good
example, providing a compact, powerful, and intuitive Python
interface to the algorithms within the Fortran codes Clawpack and
SharpClaw. PyClaw is parallelized through PETSc and has been
shown to scale well up to 65,000 cores.

Python has capabilities today for providing short and quick
implementations that compete with tailored implementations in
low-level languages up to thousands of processors. This fact is not

well known, and the purpose of this paper is to demonstrate such
a result for DNS and show the technical implementation details
that are needed. As such, the major objective of this work is to
explain a novel implementation of an excellent research tool (DNS)
aimed at a wide audience. To this end, we (i) show how a complete
pseudo-spectral DNS solver can be written from scratch in Python
using less than 100 lines of compact, very readable code, and (ii)
show that these 100 lines of code can run at speeds comparable to
its low-level counterpart in hand-written C++ code on thousands
of processors. To establish scaling and benchmark results, we
have run the codes on Shaheen, a massively parallel Blue Gene/P
machine at the KAUST Supercomputing Laboratory. The code
described is part of a larger DNS project and available online
(https://github.com/mikaem/spectralDNS) under a GPL license.

2. The Navier–Stokes equations in spectral space

Our DNS implementation is based on a pseudo-spectral
Fourier–Galerkin method [15] for the spatial discretization. The
Navier–Stokes equations are first cast in rotational form

∂u
∂t

− u × ω = ν∇
2u − ∇P, (1)

∇ · u = 0, (2)

u(x + 2πei, t) = u(x, t), for i = 1, 2, 3, (3)
u(x, 0) = u0(x) (4)

where u(x, t) is the velocity vector, ω = ∇ × u the vorticity
vector, ei the Cartesian unit vectors, and the modified pressure
P = p + u · u/2, where p is the regular pressure normalized by
the constant density. The equations are periodic in all three spatial
directions. If all three directions now are discretized uniformly in
space using a structured computationalmeshwithN points in each
direction, the mesh points can be represented as1

x = (x, y, z) =


(xi, yj, zk) =


2π i
N

,
2π j
N

,
2πk
N


:

i, j, k ∈ 0, . . . ,N − 1


. (5)

In the spectral Galerkin method all variables must be transformed
from the physical mesh x to a discrete and bounded Fourier
wavenumber mesh. The three-dimensional wavenumber mesh
may be represented as

k = (kx, ky, kz) =


(l,m, n) : l,m, n ∈ −

N
2

+ 1, . . . ,
N
2


. (6)

The discrete Fourier transforms are used to move between real
space x and spectral space k. A component of the velocity vector
(with similar notation for other field variables) is approximated in
both real and spectral spaces as

u(x, t) =
1
N3


k

ûk(t)eık·x, (7)

ûk(t) =


x

u(x, t)e−ık·x, (8)

where ûk(t) is used to represent the Fourier coefficients, ı =√
−1 represents the imaginary unit, and eık·x represents the

basis functions for the spectral Galerkin method. Eqs. (7) and (8)
correspond, respectively, to the three-dimensional discrete Fourier

1 Different domains lengths and number of points in each direction are trivially
implemented, and we use a uniform mesh here for simplicity.

https://github.com/mikaem/spectralDNS


Download English Version:

https://daneshyari.com/en/article/6919301

Download Persian Version:

https://daneshyari.com/article/6919301

Daneshyari.com

https://daneshyari.com/en/article/6919301
https://daneshyari.com/article/6919301
https://daneshyari.com

