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a b s t r a c t

A previous study (Rawitscher, 2015) of the solution of Milne’s non linear equation for the phase and
amplitude of a one-dimensional wave function is extended to the case where the incident energy is
less than the potential (Barrier region). The numerical method again consists in implementing a spectral
expansion of the amplitude in terms of a number of Chebyshev polynomials. The method is applied to a
Morse-type potential, for energies in a resonance region, and for one energy below the resonance region,
and a strong repulsive Coulomb potential. The results are compared with highly accurate direct solutions
of the Schrödinger equation, and were found to be accurate to 1:10−6.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The tunneling of a wave function through a potential barrier
is a well known phenomenon in quantum mechanics. It has
played an important role in the interpretation of various physical
phenomena, such as the decay of a nucleus through α-particle
emission, the fission [1] or fusion [2,3] of a heavy nucleus at
energies below the Coulomb barrier, optical model scattering
calculations [4–6], in the physics of ultra-low temperature
atoms [7], and may have applications in other fields of physics [8]
as well. Since the 1930s the Wentzel, Kramers, Brillouin (WKB)
approximation provided a very useful tool in the calculation of
barrier penetrationprobabilities. A goodpedagogical description of
theWKB approximationwith several good references can be found
in the book by Griffith [9]. Since the WKB expression contains
factors exp(±

 r
κ(r ′)dr ′), where κ is the local wave number,

which are exponentially sensitive to the errors of theWKB, itwould
be very helpful to find improvements to this approximation. Many
such improvements have been obtained [10], and it is the purpose
of the present note to present yet another improvement based on
the phase–amplitude (Ph–A) description of the solution of a one-
variable Schrödinger equation.

Milne’s equations for the Ph–A description [11] have a non-
linear term which presents difficulties for the numerical solution.
Seaton and Peach [12] have presented an iterative solution that
proved to be very accurate once a spectral expansion [13,14] for
the calculation of the amplitude was introduced [15]. However
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the latter formulation was up to now applied only to attractive
potentials, in the region where the local wave number is real,
in contrast to a barrier region, where the local wave number
is purely imaginary. It is the purpose of the present paper to
remedy that lack, and show that the appropriate modification of
the Ph–A method also works for the radial region that is forbidden
classically. However, the restrictions for the validity of the WKB
approximation are valid also for the method presented here,
i.e., the method is accurate only in a region sufficiently far away
from the turning points such that the variations of the potential
in a distance of the local wave length are small compared to the
potential itself [9].

In Section 2 the Ph–A formulas pertinent to the barrier region
will be derived, in Section 3 the iterative solution method will be
described, in Section 4 the connection formulas across the turning
points will be presented, in Section 5 a numerical application to
a Morse-type potential will be described for incident energies
near and below the resonance region. Section 6 contains results
for the long range Coulomb potential, Section 7 contains some
numerical considerations, and Section 8 contains the summary and
conclusions.

The resonance properties for the Morse potential case have
been investigated previously [16], and a comparison of the
accuracy of various computational methods that calculate the
scattering phase shifts in the resonance region was presented in
Ref. [17]. The accuracy analyses was possible, because the phase
shifts are known analytically for the Morse potential case. The
resonance region presents a challenging test of accuracy, because
some of the wave functions do decrease with distance r in that
region, while the errors of the computational method introduce
increasing contributions in the barrier region. It was shown in
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Fig. 2 of Ref. [17] that using a sixth order Numerov method for the
solution of the Schrödinger equation the results were six orders of
magnitude less accurate than that of a solution based on a spectral
integral equationmethod denoted as S-IEM [18]. The lattermethod
will also be used in the present investigation as a comparison
benchmark result for the numerical examples.

2. The equations

The one-dimensional radial Schrödinger equation for a partial
wave function ψ is written as

d2ψ/dr2 + k2ψ = V ψ (1)

where V is the spherically symmetric potential, that includes the
angular momentum contribution L(L + 1)/r2, and k is the wave
number. The corresponding energy of the incident particle is k2,
which is assumed to be positive. In the present notation the factor
2m/h̄2 has already been multiplied into quantities given in energy
units, such that the resulting values for V and E have units of
inverse length squared, while k is given in units of inverse length,
and r is given in units of length. The units will however not be
indicated in the graphs below. In the barrier region, where V > E,
the local wave number κ is given by

κ(r) =


w̃(r), (2)

where

w̃(r) = V (r)− k2 > 0. (3)

If one inserts into Eq. (1) the ansatz

ψ (−)(r) = y(−)(r) exp(−Φ(−)(r)) (4)

or

ψ (+)(r) = y(+)(r) exp(Φ(+)(r)) (5)

or

ψ(r) = Aψ (−)(r)+ Bψ (+)(r)

one finds that

y(+) = y(−) = y (6)

and

Φ(+)
= Φ(−)

= Φ(r) (7)

where the common amplitude y obeys the equation

d2

dr2
y − w̃ y = −

k2

y3
(8)

and the common phaseΦ is given by the simple quadrature

Φ(r) =

 r

a

k
y2(r ′)

dr ′. (9)

The two turning points at the extremities of the barrier region are
T1 and T2, and the region suitable for the Ph–A method is located
in [a, b], which is contained between T1 and T2. (Hence T1 < a ≤

r ≤ b < T2.) The complete Ph–Awave function in [a, b] is given by

ψ(r) = y(r)

A e−Φ(r)

+ B e+Φ(r)
; a ≤ r ≤ b, (10)

where the coefficients A and B are determined by the connection
formulas across the turning points. The validity of Eqs. (6)–(10) can
be verified by inserting Eq. (10) into Eq. (1), and setting to zero each
of the terms multiplied respectively the factors A or B.

Once the phase is defined according to Eq. (9), then the
relationship between phase Φ and amplitude y is determined
uniquely, but other relationships are also possible [19], as is the

case for the Calogero’s Ph–A formalism, described in Appendix A of
Ref. [15]. The region of validity of the WKB approximation requires
that the local wave length λ(r) = 2πk/[E − V (r)] changes little in
the distance of the local wave length, i. e., that

∆λ

λ
=

2πk
(V − E)2

dV
dr

≪ 1. (11)

However the conditions of applicability of the Ph–A method are
more stringent, because the convergence of the iterations depends
on the smallness of the quantity (d2y/d2r)/y compared to the
potential V .

3. Iterative solution

In this section the iterative method of Seaton and Peach [12] is
extended to the barrier region, where w̃ = V − k2 > 0. By re-
writing Eq. (8) and taking square roots, one obtains

k
y2n+1

= (D̃n + w̃)1/2, n = 0, 1, 2.. (12)

where w̃ is defined in Eq. (3), where

D̃n = −
d2yn/dr2

yn
(13)

andwhereD0 = 0. The resulting value of y1 is identical to theWKB
approximation

y1 = yWKB = (V/k2 − 1)−1/4, a ≤ r ≤ b (14)

and hence the phase and the wave function (10) becomes identical
to their WKB values. Since there would be a numerical loss of
accuracy when calculating the second order derivative of y, it is
preferable to obtain D̃n by a recursion relationwhich in the present
case takes the form

D̃n+1 = −
5
16
(D̃′

n + w̃′)2

(D̃n + w̃)2
+

1
4
(D̃′′

n + w̃′′)

(D̃n + w̃)
, n = 0, 1, 2, . . . , (15)

where ‘‘primes’’ denote derivativeswith respect to r . Forn = 0, one
has D̃0 = 0, and hence all its derivatives are zero. The derivatives
of w̃ are equal to the derivatives of V , which can be calculated
analytically if the analytic expression for V is known, as is the case
in the numerical example below. The advantage of obtaining D̃n+1
bymeans of Eq. (15) instead of by calculating the second derivative
of yn+1 directly is that the quantity D̃n+1 and its derivatives are
small compared to w̃ and its derivatives, and hence the effect of
the errors of the Chebyshev expansion of D̃n+1 and its derivatives
becomes reduced. A numerical comparison of the potential V and
the quantity D is presented in connection with an application of
the Ph–A method to a Coulomb potential.

There are two methods for obtaining D̃. One consists by
inserting the values of D̃n−1 and its derivatives into Eq. (15) in order
to obtain D̃n. Next, the derivatives of D̃n, calculatednumerically, are
inserted into the right hand side of Eq. (15) and the iteration for D̃n
continues until the iteration converges for nmax. By inserting the
result into Eq. (12) one obtains the values of ynmax for all support
points, hence the phase for all support points can be obtained
from the quadrature indicated in Eq. (9) from which the functions
ψ (±) can be obtained. This procedure is especially economical if
a spectral expansion of all the functions in terms of Chebyshev
polynomials is implemented, as described below. The coefficients
A and B required for the full wave function in Eq. (10) are obtained
by a connection formula across the left turning point, as described
below.
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