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Transmission radiometry is frequently used in industrial measurement processes as a means to assess
the thickness or composition of a material. A common problem encountered in such applications is the
so-called dynamic bias error, which results from averaging beam intensities over time while the material
distribution changes. We recently reported on a method to overcome the associated measurement error
by solving an inverse problem, which in principle restores the exact average attenuation by considering
the Poisson statistics of the underlying particle or photon emission process. In this paper we present a
detailed analysis of the inverse problem and its optimal regularized numerical solution. As a result we
derive an optimal parameter configuration for the inverse problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Transmission radiometry is a widely applied measurement
principle for thickness, density or composition of materials [1-3].
It is very often applied to material flows, e.g. for measurement
of thickness in paper production or metal sheet rolling, but also
for composition measurement on multiphase flows in the oil
and gas industry. These flows differ from quasi-static to fast-
changing regarding the frequency and gradients of flow thickness
or density. A simplified setup of a transmission radiometry sensor
configuration is shown in Fig. 1. It comprises a radiation source,
which emits photons or particles, and a radiation detector, which
counts the photons or particles after they have passed the material
under investigation. Additional means of beam collimation are
helpful to form only a thin radiation beam and to prevent scattered
radiation entering the detector. Let us assume that the particle
flux of the source has a constant average value. Further let (N)
denote the number of particles detected in a given time interval
when there is material between source and detector and (Ny) the
reference count number if there is no material between source and
detector. From physical consideration it follows, that the radiation
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is exponentially attenuated in the material, that is
(N) = (No) exp(—A). (1)

For mono-energetic radiation the total attenuation A depends
linearly on material thickness d and density p, that is

A= pppd (2)

with u, denoting the mass attenuation coefficient. The particle or
photon emission at the source is a statistical process as well as the
detection. The probability that the detector registers N counts in a
time interval for which (N) counts are being expected is given by
the Poisson distribution

)\.N
p(N) = Ny &XP (=A) (3)

with A = (N) being the expectation value. The Poisson distribution
has the following properties:

(1) The standard deviation is o = v/A.

(2) For smallvalues of A the distribution has an increasingly higher
skewness.

(3) According to the central limit theorem the distribution
approaches a symmetric normal distribution for large A.

From property (1) it follows, that statistical accuracy of a single
measurement can be improved by increasing (N). Since in indus-
trial measurement applications the source strength should be kept
low for reasons of radiation protection and hazard reduction it fol-
lows that only increasing the counting interval length would then
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Fig. 1. Principle of a radiation transmission measurement. Radiation emitted from the collimated source passes the material (with mass attenuation coefficient ., and

density p) under investigation and is registered by the collimated detector.

be an appropriate measure. However, if the material distribution
changes within that interval, an error in the total attenuation re-
sults, as we will show below.

2. Averaging methods

For the following analysis it is convenient to consider the
counting of the detector as a discrete averaging procedure. Let T
denote a longer time interval, for which the expected count rate
is considered as sufficient for a qualitatively good measurement.
Further assume, that during T the material distribution, e.g. the
material thickness, and thus A changes significantly. Now we may
assume, that we can subdivide the interval T into n shorter time
intervals of duration Ts and that A can be considered as constant
during Ts. If we were to make measurements during Ts, which we
will further refer to as instantaneous measurements, we would
find, that the count rate in each interval Ts has a high uncertainty
due to property (1) above. The conventional (and wrong) way
of averaging is to let the detector count all arriving particles or
photons within T and then to compute an average attenuation

» N..; )
A=—log 7”83”;‘*““ (4)
0

from the arithmetic mean value
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Let us now denote the expectation value of an instantaneous
measurement as (N),. Then it immediately follows, that the
instantaneous total attenuation is

(N>k
(No)
and hence the ‘true’ average is given by
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Here, a simple substitution of the unknown (N), by the actually
registered events Nj is not possible in general. In case of low
count rates (N),, the absence of registered photons during at least
one time interval Ts is likely because of the Poisson distributed
photon emission process. Such a single event Ny, = 0 would abort
the calculation of A. Therefore, the conventional method (4) is a
common approach for averaging since it handles this problem.
For a comparison between the conventional method and the true
average, let us assume we have a large number of instantaneous
measurements n such that N grithmeric & (N) grichmetic = % S iy (N

In that case the average attenuation calculated by (4) is an
underestimation,

A<A, (8)

because of the inequality of means: (N)githmeric = (N} geometric- The
equality only holds for constant (N),, whereas the deviation in-
creases with increasing variability of the flow. This effect is pre-
sented in our previous work [4]. This so-called dynamic bias error
appears in void fraction measurement for two-phase flows for in-
stance. In case of slug flow and turbulent flow the amount of atten-
uating water that passes the gamma-rays strongly varies within
short time intervals which leads to a significant overestimation
of the void fraction [5]. Further analysis of the dynamic bias er-
ror can be found in [6-10]. A correction method is given in [10]
which bases on a momentum expansion of the count rate distri-
bution. Further, correction methods for the dynamic bias error in
two-phase flow measurements are also proposed in [5,11-13]. The
first also takes the Poisson distribution into account in order to per-
form a first-order correction.

As an alternative, we introduced in [4] a new method for correct
averaging which we outline in the following. The probability p(N)
of registering N particles at the detector for expectation values (N)
is given by the Poisson distribution (3). With that, one obtains the
conditional probability distribution p(N | A) of registering N events
at the detector for a given attenuation A by

(No exp (—A)"

N!

Assuming the probability density 6 (A) for occurrence of A in a flow
to be known, the average attenuation is given by

p(N[A) = exp (=No exp (—A)) . (9)

[o¢]
A =/ AA(A)dA. (10)
0
In order to obtain 6(A), one can apply the law of total probability
to the introduced distributions, which leads to

o0

f(N) =/0 6 (A)p(N | A)dA, (11)
with f(N) as the frequency distribution of the count rates N. In
radiation densitometry, these count rates are observed (and so
f(N)) and the attenuation is unknown (and so 6(A)). Therefore,
radiation densitometry inherently presents an inverse problem
and solving (11) becomes the main part of the correct averaging
method.

3. Analysis of the discrete system

Since an analytical solution of Eq. (11) cannot be obtained in
general, a discrete version is required. In practice the registered
detection events are integer values. Therefore, f(N) is already a
discrete distribution. For numerical treatment it should also be
finite, hence we limit f (N) to afinite set of length L. Further, one can
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