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a b s t r a c t

Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused
by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the
frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex
task due to the non exact representation of the geometry and due to the necessity for mesh refinement
when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both
mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach.
The combined high-order approximation of both leads to high accuracies at a substantially lower
computational cost.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Controlling the resonant frequency of cavity eigenmodes in a
particle accelerator is crucial in order to guarantee the synchro-
nization of the electromagnetic wave and the particle bunches.
Such frequency is determined essentially by the geometry of the
cavity walls, which is therefore a critical parameter for the de-
sign of the cavity. The high-energy electromagnetic field inside the
cavity exerts a radiation pressure on the walls, which causes a me-
chanical deformation of the geometry. Albeit small, this deforma-
tion may lead to a significant shift of the resonant frequency. This
effect, known as Lorentz detuning [1–4], needs to be predictedwith
high precision in order to achieve a robust cavity design.

Standard Finite Element Methods (FEM) may require an
extremely high level of mesh refinement to achieve sufficient
accuracy when evaluating Lorentz detuning, due to inaccuracies
when approximating the deformed and undeformed cavity walls
in the FEM mesh and due to the limited accuracy of typical low-
order FEM basis functions. In this work, we propose a simulation
strategy based on Isogeometric Analysis (IGA) [5] which allows an
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exact representation of the geometry and the direct application
of the computed deformation to the starting geometry, without
any further approximation. Finally it offers the possibility to
accurately approximate the electromagnetic fields using high-
order elements [6].

The outline of this paper is as follows: first we introduce the
coupled electromagnetic–mechanical model describing Lorentz
detuning. In the subsequent section Isogeometric Analysis is
introduced along with an overview on the particular discretization
used for Maxwell’s equations. Finally we present the results
obtained for the standard cylindrical test case and for the TESLA
cavity geometry [7].

2. Multi-physics model for Lorentz detuning

Consider a one cell cavity geometry as the one depicted in
Fig. 1. Let the two disjoint open domains with Lipschitz continuous
boundaries ΩW ⊆ R3 and ΩC ⊆ R3 represent the cavity walls
and the interior of the cavity, respectively. Let ΓCW = ΩC ∩ ΩW
denote the interface between the two domains. To evaluate the
frequency shift, it is necessary to solve Maxwell’s eigenproblem
inside the undeformed and deformed cavity and an elasticity
problem in the cavity walls. We employ linear elasticity theory
since the deformations are very small. The radiation pressure on
the common interface ΓCW introduces a coupling between the two
problems [8]. The calculation steps are as follows:
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Fig. 1. 2D cut of the 3D computational domain for simulating Lorentz detuning in
one cell of the TESLA cavity [7] (not to scale) and labels for the domains and the
boundaries (yz section). The full cell is the result of a revolution around the z axis.

Step 1. Solve Maxwell’s eigenproblem in ΩC :

∇ ×


1
µ0

∇ × E


= ω2
0ϵ0E in ΩC (1a)

with the boundary conditions
E × nc = 0 on ΓCW

1
µ0

∇ × E


× nc = 0 on ΓC
(1b)

where µ0 and ϵ0 are the permeability and permittivity of vac-
uum and nc is the outward unit normal to ΩC . We assume time-
harmonic fields with E a phasor given in terms of peak values. As
cavity walls are often composed of a superconducting material,
e.g. niobium, in order to reduce losses, they are assumed here to
behave as a perfectly conducting boundary. At the two irises ΓC ,
a Neumann condition is enforced, which is a common approxi-
mation corresponding to assuming the cell to be one of an infi-
nite chain of cells. The eigenmode solution delivers a number of
eigenfunction–eigenvalue couplets, corresponding to the possible
modes within the cavity. The accelerating mode of interest is the
first transverse magnetic mode (TM010). Let E0 be the computed
electric field and ω2

0 the corresponding eigenvalue, then f0 =
ω0
2π is

the resonant frequency for the accelerating eigenmode in the un-
deformed geometry.

Step 2. Compute the magnetic field H0 for the first accelerating
eigenmode as

H0 =
i

ω0µ0
∇ × E0. (2)

The accelerating mode exerts on the cavity walls a radiation
pressure with one component at 0 frequency and one component
at frequency 2 f0. In practice, the latter can be neglected and the
radiation pressure on ΓCW is approximated by a time-constant
value that may be expressed as

p = −
1
4
ϵ0 (E0 nc) ·


E∗

0 nc

+

1
4
µ0 (H0 × nc) ·


H∗

0 × nc


(3)

where E0 and H0 are peak values and (·)∗ denotes the complex
conjugate.

Step 3. Solve the following linear elasticity problem in the walls
domain ΩW

∇ ·

2η∇

(S)u + λI∇ · u


= 0 in ΩW (4a)

with boundary conditions
u = 0 on ΓW
2η∇

(S)u + λI∇ · u

nw = p nw on ΓCW

2η∇
(S)u + λI∇ · u


nw = 0 on Γext

(4b)

for the displacement u. In (4) we denote by ∇(S) the symmetric
gradient, while η and λ are the Lamé parameters of the wall
constituent material and nw is the outward unit normal to ΩW . On
ΓCW the radiation pressure p is applied.

Step 4. Let the deformed walls domain Ω ′

W be defined as

Ω ′

W ≡ {x + u (x) , x ∈ ΩW } , (5)

and the deformed cavity boundary Γ ′

CW as

Γ ′

CW ≡ {x + u (x) , x ∈ ΓCW } . (6)

Furthermore, let Ω ′

C denote the domain enclosed by Γ ′

CW and ΓC .
Step 5. Solve Maxwell’s eigenproblem in Ω ′

C :

∇ ×


1
µ0

∇ × E′


=


ω′

0

2
ϵ0E′ in Ω ′

C

with the boundary conditions
E′

× n′

c = 0 on Γ ′

CW
1
µ0

∇ × E′


× n′

c = 0 on Γ ′

C

and let


ω′

0

2
, E′

0


denote the accelerating eigenmode. The

shifted frequency is finally obtained as

f ′

0 =
ω′

0

2π
and the frequency shift due to Lorentz detuning as

∆f0 =
f0 − f ′

0

 . (7)

This procedure can be carried out iteratively if necessary.

3. Numerical discretization

Isogeometric Analysis (IGA)was born, less than adecade ago [9],
with the goal of bridging the gap between Computer Aided Design
(CAD) and Finite Element Method (FEM). The main distinctive
feature of IGA is that CAD geometries, commonly defined in
terms of Non-UniformRational B-splines (NURBS), are represented
exactly throughout the analysis, regardless of the level of mesh
refinement, while in standard FEM the computational domain
needs to be remeshed when performing h-refinement and its
geometry approaches the exact one only in the limit of vanishing
mesh size h.

Moreover, in addition to h-refinement and p-refinement,
k-refinement [5] was introduced as a combination of degree
elevation and mesh refinement, yielding approximation spaces
with higher regularity properties. k-refinement has the advantage
of not increasing the number of degrees of freedomof the problem,
but produces matrices with larger bandwidth.

The particular IGA scheme adopted in this work takes advan-
tage of the benefits of different approaches for each of the dif-
ferent physical subproblems being considered. The computational
domains ΩW and ΩC are both defined via geometric mappings
constructed in terms of NURBS basis functions. In solving the me-
chanical subproblem (4) an isoparametric approach is adopted so
that the computed (discrete) displacement is defined in terms of
the same NURBS basis and therefore the domain deformation (5)
is treated in a straight-forward way by a simple displacement of
the control-points. In solving the Maxwell sub-problem (1), on the
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