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a b s t r a c t

Two energy-preserving schemes are proposed for the ‘‘good’’ Boussinesq (GBq) equation using the
Hamiltonian Boundary Value and Fourier pseudospectral methods. The equation is discretized in space
by Fourier pseudospectral method and in time by Hamiltonian Boundary Value methods (HBVMs). The
outstanding advantages of the proposed schemes are that they can precisely conserve the global mass
and energy, and provide highly accurate results. The single solitary wave, the interaction of two solitary
waves and the birth of solitary waves are presented to validate the accuracy and conservation properties
of the proposed schemes. In addition, we also compare our numerical results with other known studied
methods in terms of numerical accuracy and conservation properties.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear partial differential equations have attracted much
attention in studying evolution equations describing wave propa-
gation. The Boussinesq (Bq) equation is one of the important mod-
els describing the nonlinear dispersive waves, which has many
applications inmany areas, e.g., ion-acoustic wave in plasma, mag-
netohydrodynamics wave in plasma, longitudinal dispersive wave
in elastic rods and pressure wave in liquid–gas bubble mixtures,
and so on. The Bq equation was first introduced by Boussinesq [1]
in 1872. In this paper, we consider the following initial boundary
value problem:

utt = uxx − uxxxx + (u2)xx, (x, t) ∈ [a, b] × [0, T ], (1.1)
with the initial condition
u(x, 0) = ϕ1(x),
∂u
∂t

(x, 0) = ϕ2(x), x ∈ [a, b],
(1.2)

and the periodic boundary conditions
u(a, t) = u(b, t),
∂u
∂x

(a, t) =
∂u
∂x

(b, t), t ∈ [0, T ].
(1.3)
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In the literature, Eq. (1.1) is often known as GBq equation. In this
paper, we consider the GBq equation (1.1), with a periodic bound-
ary condition over a one-dimensional (1D) domain Ω = [a, b],
and initial data u(x, 0) = ϕ1(x), ut(x, 0) = ϕ2(x), both of which
are periodic. It is assumed that unique, periodic, smooth enough
solution exists for Eq. (1.1) over the time interval [0, T ]. This peri-
odicity assumption is reasonable if the solution to Eq. (1.1) decays
exponentially outside [a, b] [2]. Under the periodic boundary con-
ditions, Eq. (1.1) has the following conserved invariants, i.e., mass
and energy [3,4]

M =

 b

a
udx, (1.4)

E =
1
2

 b

a


v2

+ u2
+

2
3
u3

+ u2
x


dx, (1.5)

where ut = vx.
In recent years, along with the development of computer

science, the study of the preservation of invariant tori for nearly
integrable Hamiltonian systems has been a central theme in the
research. With respect to this topic, researchers have proposed
many methods, for example, symplectic (and/or symmetric)
methods [5], however, these methods can only assure, at most,
the conservation of quadratic Hamiltonian functions. On the
other hand, it is possible to follow different approaches to
derive geometric integrators which are energy-preserving. This
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has been done in the pioneering work [6], and later in [7], where
discrete gradient methods are introduced and studied. In addition,
another energy-preserving method, the Averaged Vector Field
(AVF) method, which is considered in [8].

In this paper, the proposed schemes are constructed based
on the HBVMs, which have been developed in a series of papers
[9–23]. These methods, can be interpreted as an extension of the
well-known Gauss–Legendre methods with the difference that
HBVMs provide a precise energy conservation for polynomial
Hamiltonian functions of any high degree. Moreover, Brugnano,
Iavernaro and Trigiante [15] have proposed that these methods
turn out to be symmetric, precisely A-stable, and can have
arbitrarily high order. To our knowledge, the HBVMs is often
used to solve ODEs, and there are few literatures about solving
partial differential equations (PDEs). Nevertheless, Brugnano,
Frasca Caccia and Iavernaro [17,18,24] have investigated the
numerical solution of Hamiltonian PDEs using the energy-
conserving methods in the HBVMs class, when a finite difference
or spectral space discretization is considered. Frasca Caccia [23] has
introduced the implementation and application of HBVMs.

Li and Vu-Quoc [25] once said that ‘‘in some areas, the ability
to preserve some invariant properties of the original differential
equation is a criterion to judge the success of a numerical simu-
lation’’. Zhang, Víctor and Luis [26] pointed out that nonconserva-
tive schemes may easily show nonlinear blow-up. Thus, the main
purpose of this paper is to study conservative schemes for the GBq
equation. The GBq equation and its various extensions have been
investigated by many authors. For instance, Manoranjan, Mitchell
and Morris [3] presented a new solution for the two-soliton inter-
action of Eq. (1.1) and verified it using Galerkin methods. Ortega
and Sanz-Serna [27] studied the nonlinear stability and conver-
gence of some simple finite-difference schemes for Eq. (1.1). Frutos,
Ortega and Sanz-Serna [28] proposed a pseudospectral scheme and
studied its nonlinear stability and convergence for Eq. (1.1). Ay-
dın and Karasözen [29] constructed second-order symplectic and
multisymplectic integrators for Eq. (1.1) using the two-stage
Lobatto IIIA–IIIB partitioned Runge–Kutta method. Mohebbi and
Asgari [30] proposed three fast and high accuracy numerical meth-
ods for the problem (1.1). Cai and Wang [31] proposed a series of
local structure-preserving algorithms for the GBq equation. Wang
et al. [32] proposed an energy-preserving finite volume element
method for the improvedBoussinesq equation.More analytical and
numerical works related to GBq equation can be found in the liter-
ature, for example, [2,33–41].

The outline of this paper is as follows. In Section 2, we present
the framework of HBVMs. Then, in Section 3, we discretize the
GBq equation with Fourier pseudospectral method in space, and
derive the proposed energy-preserving schemes. All numerical
experiments are presented in Section 4. The final section presents
some simple conclusion.

2. Notation and preliminaries

In this section, we provide a novel framework for HBVMs.
Here we briefly introduce the background information concerning
the HBVMs. We follow the standard HBVMs formulation reported
in [14].

Let

y′
= J∇H(y), y(0) = y0 ∈ R2m, (2.1)

be a Hamiltonian problem in canonical form, where JT = −J =

J−1 is a constant, orthogonal and skew-symmetric matrix, usually
given by

J =


0 I
−I 0


, (2.2)

where I is the identity matrix of dimensionm.

The scalar function H(y) is the Hamiltonian of the problem and
its value is constant during the motion, namely

H(y(t)) ≡ H(y0), ∀t ≥ 0,

for the solution of (2.1). Indeed, one has:

d
dt

H(y(t)) = ∇H(y(t))Ty′(t)

= ∇H(y(t))T J∇H(y(t)) = 0, ∀t ≥ 0. (2.3)

Often, the Hamiltonian H is also called the energy, since for
isolated mechanical systems it has the physical meaning of total
energy. Consequently, energy conservation is an important feature
in the simulation of such problems. On the other hand, assume
that, in problem (2.1), the Hamiltonian is a polynomial of degree
ν. Moreover, starting from the initial condition y0, we want to
produce a new approximation at t = h, say y1, such that the
Hamiltonian is conserved. Let us consider a polynomial path σ of
degree s ≥ 1. Having fixed a suitable basis {P0, P1, . . . , Ps−1} for
Πs−1, one can expand the derivative of σ as

σ ′(ch) =

s−1
j=0

Pj(c)γj, c ∈ [0, 1], (2.4)

for certain set of coefficients {γj} to be determined. In particular,
we here consider an orthonormal polynomial basis, provided by
the shifted and scaled Legendre polynomials on the interval [0, 1].

By imposing the initial condition

σ(0) = y0,

one then formally obtains

σ(ch) = y0 + h
s−1
j=0

 c

0
Pj(x)dxγj, c ∈ [0, 1], (2.5)

and the new approximation given by y1 = σ(h).
Energy conservation may be obtained by the following compu-

tation, namely

H(y1) − H(y0) = H(σ (h)) − H(σ (0))

=

 h

0
∇H(σ (t))Tσ ′(t)dt

= h
 1

0
∇H(σ (ch))Tσ ′(ch)dc

= h
 1

0
∇H(σ (ch))T

s−1
j=0

Pj(c)γjdc

= h
s−1
j=0

 1

0
∇H(σ (ch))Pj(c)dc

T

γj = 0,

provided that the unknown coefficients {γj} satisfy

γj = J
 1

0
∇H(σ (ch))Pj(c)dc, j = 0, 1, . . . , s − 1. (2.6)

By setting, hereafter,

f (·) = J∇H(·),

the new approximation is then given by plugging (2.6) into (2.5):

y1 = σ(h) = y0 + h
s−1
j=0

 1

0
Pj(x)dx

 1

0
Pj(τ )f (σ (τh))dτ

= y0 + h
 1

0
f (σ (τh))dτ . (2.7)
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