
Computer Physics Communications 201 (2016) 77–84

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A Markov Chain-based quantitative study of angular distribution of
photons through turbid slabs via isotropic light scattering
Xuesong Li ∗, William F. Northrop
Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN, 55454, USA

a r t i c l e i n f o

Article history:
Received 19 July 2015
Received in revised form
17 December 2015
Accepted 26 December 2015
Available online 6 January 2016

Keywords:
Multiple scattering
Markov processes
Monte Carlo methods

a b s t r a c t

This paper describes a quantitative approach to approximate multiple scattering through an isotropic
turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering
for optical diagnostic purposes; however, existing methods are either inaccurate or computationally
expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering
angular distribution (AD) that can accurately calculate AD while significantly reducing computational
cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering
research and deterministic reconstruction algorithm development with AD measurements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Particle and spray diagnostics has attracted increasing interest
in a variety of fields, such as spray analysis for combustion [1,2],
particulate matter (PM) monitoring and soot emission control [3],
medical diagnostics [4,5], and remote sensing [6]. Among the
diagnostic methods, optical diagnostics based on scattering are
emerging due to their potential for instantaneous measurements.
A significant amount of research in the area falls into the category
of Mie scattering where the size of scattering particles is close to
the wavelength of the incidental light. Important parameters, such
as optical depth (OD) of the spray or turbid slab, spray particle
size, and spray structure, can be inferred via the output light
signal that goes throughMie Scattering, for example, light intensity
attenuation or diffusion. Common practices for understanding
light scattering process include solving a set of wave equations or
a set of simplified relations including radiative transfer equations
(RTEs) [7]. However, significant challenges arise when solving
these equations, especially under complex realistic conditions;
therefore, RTE application is usually limited to 1D. Numerous
efforts to approximate the light scattering process have been
attempted and good approximations can be found for single
scattering regime (OD < 1) andmultiple scattering regime (OD >
10). However, the light scattering approximation with an OD
between 1 and 10 (intermediate regime) remains a challenge [8].
Common methods for simulating light scattering within the
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intermediate regime include random walk (RW) approximation,
which provides simplified mathematical formation to predict
transmitted photon properties, andMonte Carlo simulation, which
relies on repeated random sampling (ray tracing) to obtain a
statistically meaningful result.

The angular distribution (AD) of multiple scattering photons
has been utilized in many areas such as lens selection [9] and at-
mosphere remote sensing [10]. Recently, AD shows great research
potential in optical diagnostics, for example, to determine parti-
cle sizes in a turbid slab [11]. In order to reconstruct the particle
size distribution or optical depth distribution, especially in a com-
plex turbid slab, a robust inversion algorithm is highly desirable.
Researchers have used many inversion algorithms for optical di-
agnostic reconstructions, such as simulated annealing (SA) [12,13]
and computed tomography (CT) algorithms [14]. Most reconstruc-
tion algorithms require a fast evaluation of the difference between
simulations andmeasurements in the formof a cost function. How-
ever, a fast and reliable calculation of AD, especially in the inter-
mediate regime is not readily available. Existing literature have
investigated AD using RTEs [15] but its use is limited by complex-
ity. Gandjbakhche et al. [16] utilized lattice randomwalk theory to
predict several observations including transmitted photon location
distribution, transmitted path length distribution, and total trans-
mission. However, the RW approximation has limitations such as
requiring that the scattering medium be uniform, only being ap-
plicable at specific ODs, and lack of an available explicit expression
for AD. Monte Carlo simulation [8] is capable of finding AD but the
computational cost is prohibitively expensive for reconstruction
applications, thus rendering it less desirable. A previous work [17]
attempted to use an analytical, closed-form method to calculate
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AD for isotropic scattering. Reasonable agreements were found be-
tween the analytical solutions and Monte Carlo simulations under
different conditions. However, the application of the work is lim-
ited because Q (z), which was defined as the fraction of the trans-
mitted photons that undergo their last scattering event at z, was
an empirical prediction and no rigorous derivation was given.

These considerations inspire our Markov Chain approximation
approach which can both (1) significantly reduce the computation
cost for each AD evaluation and (2) obtain high fidelity AD simu-
lations for inversion algorithms. The Markov Chain approximation
can also be used formore complex optical diagnostics applications,
such as anisotropic scattering investigations or determining spa-
tial distribution of transmitted photons. However, in this paper,
we will limit the scope of our discussion to isotropic AD analysis.
Expanded investigations will be covered by future work. This pa-
per is organized as follows: Section 2 briefly introduces the fun-
damentals of Mie Scattering andMarkov Chain approximation and
describes the application of theMarkov Chainmethod toMie Scat-
tering. An introduction of Monte Carlo simulation for light scat-
tering is also included in this section. Section 3 demonstrates the
results obtained by the Markov Chain method and compares the
results with those obtained by Monte Carlo simulation. Section 4
incorporates an error analysis and discusses future Markov Chain
approximation applications. Finally, Section 5 summarizes this pa-
per.

2. Scattering and approximation approaches

2.1. Photon transport fundamentals

Fig. 1 demonstrates an example of light scattering through a
turbid slab. We assume an infinitely large turbid slab in the x and y
directions and fixed thickness. Light (photons) propagates into the
turbid slab (scattering medium) in the −z direction. The photons
then may be scattered and propagate in another direction then be
scattered repeatedly until they leave the turbid slab. If the photons
propagate through the turbid slabwithout any scattering (scenario
(1)), we call them ballistic photons. These photons propagate the
shortest distance possible through the slab. If the photons scatter
and leave the turbid slab from the bottom plane, as can be seen
in scenario (2), we define them as transmitted photons. Ballistic
photons are usually considered to be transmitted photons, but
within the scope of this paper, we exclude them because ballistic
photon characteristics are more predictable and complex analysis
is not required. The remaining photons that return to the top plane
after a series of scattering, as can be seen in scenario (3), are defined
as reflected photons. Because the slab is infinitely large, photons
will be either transmitted or reflected, and eventually leave the
turbid slab if we assume there is no absorption effect. The angle
θ formed by z-axis and the propagation direction of photons are
defined as propagation angles. Specifically, if the photons are to
exit the slab from the exit plane,we call the angle θ the transmitted
angle; and if photons exit from the entrance plane,we call the angle
θ the reflected angle.

When photons propagate in scattering mediums, there are two
factors that determine their scattering characteristics. The first
factor is how the propagation direction of the photons changes
when scattering takes place. For Mie scattering, the change of
propagation direction is determined by the phase function, which
is a complex function of several parameters such as the diameter
of the particles, wavelength of the incident light, refractive index
of the particles, etc. In this study we focus on isotropic scattering,
i.e., the photon has an equal chance to propagate in every direction
and no practical phase function was applied. The second factor
is how far the photon propagates until the next scattering event.
The propagation distance is determined by the optical depth (OD)

Fig. 1. Schematic of the light scattering problem.

traversed by the photon. The probability of the photon propagating
through a free path length of lfp can be expressed by [18]:

lfp = −
ln ξ
µe

(1)

where ξ is a random number that has a uniform probability
between0 and1, andµe is the extinction coefficient. Also note that:

ODfp = lfp · µe. (2)

WedefineODfp as the optical depth that the photon has propagated
through between two adjacent scattering events. Then we can
easily derive the following equation:

P(ODfp) = exp(−ODfp) (3)

where P(ODfp) is the probability that a photon propagates ODfp
between two adjacent scattering events. If we discretize the turbid
slab into Z layers with equal thickness1z, as shown in Fig. 1 (note
that the OD in each layer might be different), the probability that a
photon scattered in layerm takes the next scattering event in layer
n at a transmitted angle of θ can then be expressed by:

P(m, n, θ) = Φ(θ) · exp(−ODfp)

=
sin θ
2

· exp


−

n
i=m

Σs,i ·1z
cos θ


(4)

where Σs,i is the scattering coefficient of layer i for a photon
propagating at θ = 0 (i.e. in −z direction) and ODfp =

n
i=m(Σs,i ·

1z).Φ (θ) = sin θ/2 is the phase function for isotropic scattering.
Finally, the probability for a photon to propagate from layer m to
layer n at any propagation angle θ is given by:

P(m, n) =

 π/2

0

sin θ
2

· exp


−

n
i=m

Σs,i ·1z
cos θ


dθ. (5)

Eq. (5) is a crucial relationship because it specifies the transition
probability from layer m (or state m) to layer n (or state n).
Furthermore, photon scattering has a ‘‘memoryless’’ property,
which means the next scattering event can only be determined
from the current scattering event. Thus, a priori knowledge of
the scattering events before the current scattering event is not
required. Markov Chain theory can now be used as a robust
tool to approximate scatterings by combining defined transition
probability with the memoryless feature.

2.2. Absorbing Markov Chain theorem

The Markov Chain theorem has found wide applications
in decision making, queueing theory, physics, games, internet
applications, etc. [19]. A transitionmatrix, P is used to describe the
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