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a b s t r a c t

We present a numerical approach to calculate non-equilibrium eigenstates of a periodically time-
modulated quantum system. The approach is based on the use of a chain of single-step propagating
operators. Each operator is time-specific and constructed by combining the Magnus expansion of the
time-dependent system Hamiltonian with the Chebyshev expansion of an operator exponent. The
construction of the unitary Floquet operator,which evolves a system state over the fullmodulation period,
is performed by propagating the identity matrix over the period. The independence of the evolution
of basis vectors makes the propagation stage suitable for realization on a parallel cluster. Once the
propagation stage is completed, a routine diagonalization of the Floquet matrix is performed. Finally, an
additional propagation round, now involving the eigenvectors as the initial states, allows to resolve the
time-dependence of the Floquet states and calculate their characteristics. We demonstrate the accuracy
and scalability of the algorithm by applying it to calculate the Floquet states of two quantum models,
namely (i) a synthesized random-matrix Hamiltonian and (ii) a many-body Bose–Hubbard dimer, both of
the size up to 104 states.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fast progress in manipulations with cold and ultra-cold atoms,
quantum optics and nanoscale fabrication techniques has brought
quantum physics in touch with technology [1–3]. It is then natural
that computational quantum physics plays an ever increasing role
in explaining and guiding current experiments and suggesting new
ones [4]. From the computational point of view, the complete
resolution of a coherent, i.e., an isolated from the environment,
quantum system means the solution of the eigenvalue problem
for the system Hamiltonian H . When the Hamiltonian is time-
independent, this task can be executed by performing full
diagonalization of the Hamiltonian matrix. When the system
becomes too large the size of the matrix may not allow any longer
for its full diagonalization. The task, however, could be restricted to
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finding lowest energy eigenstate(s) which can be accomplished by
using the Lanczos algorithm [5] ormore sophisticated tools, such as
the Density-Matrix Renormalization Group (DMRG) methods [6].
In cases that the system is periodically modulated in time, its
Hamiltonian becomes a time-periodic operator H(t + T ) = H(t +

2π/ω) = H(t). The dynamics of the system is accordingly then
governed by the set of so termed Floquet states [7,8]. These states
are not eigenvectors of the Hamiltonian H(t) but instead of the
unitary Floquet operator

UT = T exp

−

i
h̄

 T

0
H(t ′)dt ′


, (1)

where T is Dyson’s time-ordering operator. This operator
propagates the system over the period T of modulations, while the
corresponding time-periodic Floquet states form a time-periodic
orthogonal basis spanning the system Hilbert space [9,10]. The
structure of the unitary Floquet matrix, and thus the properties of
the Floquet states, dependon themodulationprotocols andparam-
eters. This is a key feature of periodically driven quantum systems
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which makes them so attractive to the theoreticians and experi-
mentalists working in the field of quantum optics, optomechan-
ics and solid state physics [9–13]. Strong modulations can sculpt
a set of non-equilibrium eigenstates which may drastically dif-
fer from the states exhibited by the system in the unmodulated,
stationary limit. Thus, modulations allow to grasp novel phenom-
ena and effects which are out of reach within time-independent
Hamiltonians; they can be used to create topological insulators in
semiconductor wells [14], synthesize Majorana fermions in quan-
tum wires [15], and engineer gauge fields for spinless neutral
atoms [16].

The calculation of Floquet states of a large quantum system
constitutes a challenge. The key step is a construction of the unitary
Floquet matrix, Eq. (1) (its final diagonalization computationally
similar to the diagonalization of stationary Hamiltonian matrices).
The most straightforward way to obtain UT is to numerically
propagate the identity matrix over the time period T . However,
the propagation with a time-dependent Hamiltonian operator
presents an issue of its own. There are two ways to do so.

The first option is to use piecewise-constant modulation
functions. This allows to reduce the computational task to the
diagonalization of time-independent Hamiltonians, one for every
time interval, and the expansion of eigenvectors of a preceding
Hamiltonian in the basis of the consecutive one. Such modulations
were used to investigate connections between integrability
and thermalization [17–19], and to explore disorder-induced
localization [20] in periodically driven many-body systems. With
respect to the thermalization it was found that the temporal
modulations heat the system to infinite temperature so that
the system Floquet states are near uniformly smeared over the
eigenbasis of the system in the absence of driving [17–19]. An
important question that immediately arises is whether this is a
universal phenomenon or it is related to the non-differentiability
of the modulation function (whose property induces the presence
of all multiple frequencies kω, k = 1, 2, . . . , in the spectrum
of the modulations function). Evidently, this question cannot be
answered without going beyond the piecewise setup. In addition,
in view of possible experimental realizations, smooth continuous
modulations are also more preferable.

An alternative option is to expand the time-dependent
Hamiltonian into a Fourier series and, and then truncating it, by
keeping 2F + 1 harmonics kω, k = −F , . . . , 0, . . . , F only, to
reduce the problem to the diagonalization of a time-independent
super-Hamiltonian [8,21]. This is a reliable method to obtain
Floquet spectrum of a system of a size up to a hundred of states.
For larger systems, this strategy leads to a computational problem:
the size of the super-Hamiltonian scales as N × (2F + 1), where
N is the dimension of the system’s Hilbert space. Computational
diagonalization efforts increase as [N×(2F+1)]3, while the known
diagonalization algorithms are poorly scalable. For a system of the
size N = 104, already F = 50 harmonics is far too much; a full
diagonalization of a 106

× 106 matrix becomes unfeasible. At the
same time, this large number of harmonics is not enough to resolve
faithfully the Floquet spectrum of the system.1

Therefore, in order to calculate the Floquet state of a system
with N > 103 states, the propagation stage has to be included
into an algorithm. A propagation method should guarantee a high
accuracy with respect not only to the unitary time evolution, but
as well with respect to the phases of complex vectors. That is
because Floquet states appear as superpositions of basis vectors
used towrite system’s Hamiltonian. Accumulated phase errorswill

1 The eigenvalue spectrum of the super-Hamiltonian can be resolved with the
accuracy 2π/(2F +1) at best. This is not enough taking into account that the actual
mean spacing between the eigenvalues is π/N .

destroy the interference and lead to an incorrect set of Floquet
states. As we show in Section 7, quantum interference effects,
together with some results from quantum chaos theory [22], can
be used to benchmark the accuracy of an algorithm.

Because of the trade-off between the accuracy and system
size, the time of sequential vector propagation grows super-
linearly with N . Faithful calculations of Floquet spectra of non-
integrable systems (whose Hilbert space cannot be decomposed
into several non-interacting low-dimensional manifolds [23]),
with tens of thousands of states, can only be performed with
scalable algorithms.

This paper presents an algorithm to calculate the Floquet spec-
tra of strongly-modulated quantum systems with N > 104 quan-
tum states and its implementation on a parallel supercomputer.
The propagation part of the algorithm is based on the combina-
tion of the Magnus expansion of time-dependent linear opera-
tors [24] and the Chebyshev expansion of operator exponents [25].
This combination has been proposed in [26], where its particu-
lar numerical realization, implementing a commutator-free Mag-
nus scheme, was tested. We demonstrate here the accuracy and
scalability of the algorithm by using two quantum models, with
a synthesized random-matrix Hamiltonian and a many-body non-
integrable bosonic dimer. The size of model system is limited by
the diagonalization routine only, so the algorithm can be used to
calculate Floquet states of systems of the size up to N ∼ 50 000
states.

The paper is organized as follows: Section 2 outlines the
theoretical background and introduces theMagnus and Chebyshev
expansions; Section 3 describes the algorithm; in Section 4 we
introduce model systems, apply the cluster implementation to
calculate their Floquet states in Section 5, and analyze the results
in Section 7. Finally we summarize our findings and outline further
perspectives in Section 8.

2. Theoretical background

Floquet states. We consider quantum systems whose dynamics
is determined by the time-dependent Schrödinger equation

ih̄∂t |ψ(t)⟩ = H(t)|ψ(t)⟩, (2)

where the Hamiltonian H(t) denotes a time-periodic Hermitian
operator, H(t + T ) = H(t). We assume that the system evolves
in a finite-dimensional Hilbert space spanned by N basis vectors.
The time evolution of the system is fully determined by a unitary
operator U(t0, t), being the solution of the equation

ih̄∂tU(t0, t) = H(t)U(t0, t) (3)

for the initial condition in the form of the identity matrix,
U(t0, t0) = 1. This provides the propagator of the system, i.e. a
unitary operator, which evolves any system state from a time t0
to time t0 + t , U(t0, t)|ψ(t0)⟩ = |ψ(t0 + t)⟩. A time t0 ∈ [0, T ]

specifies the state of the Hamiltonian operator at the initial time,
when, for example, the driving is switched on. This starting time
can be absorbed into the Hamiltonian as a parameter, H(t, t0) =

H(t + t0) (the propagator U(t0, t) can be obtained from U(0, t) as
U(t0, t) = UĎ(0, t0)U(0, t + t0)), so for later convenience, we set
t0 = 0 in Eq. (3) and denote U(0, t) by Ut . Eigenvectors {|φµ(0)⟩}
of the unitary matrix UT ,

UT |φµ(0)⟩ = e−iθµ |φµ(0)⟩, µ = 1, . . . ,N, (4)

form a time-periodic full orthonormal basis in the system Hilbert
space2 [7–9,15,16,18,20]

|φµ(t + T )⟩ = |φµ(t)⟩. (5)

2 When the notion of the Floquet states was introduced in quantum physics,
the following convention has originally been employed: The set {ϕµ(t) =
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