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a b s t r a c t

We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG)
algorithmswhich allow to access larger time scales.We specifically aim at beginners and present practical
aspects of how to implement these modifications within any standard matrix product state (MPS)
based formulation of the method. Most importantly, we show how to ‘combine’ the Schrödinger and
Heisenberg time evolutions of arbitrary pure states |ψ⟩ and operators A in the evaluation of ⟨A⟩ψ (t) =

⟨ψ |A(t)|ψ⟩. This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics
⟨A⟩ρ(t) = Tr[ρA(t)] induced by an initial density matrix ρ is straightforward. In the context of linear
response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation
time by a factor of two by ‘exploiting time translation invariance’, which is efficiently implementable
within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler
succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python
programming language as an elegant option for beginners to set up a DMRG code.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The density matrix renormalization group (DMRG) [1,2] was
originally devised [3,4] as a tool to accurately determine static
ground state properties of one dimensional systems. From a mod-
ern perspective, the core DMRG algorithm can be formulated el-
egantly if one introduces the concept of matrix product state
(MPS) [5–8]. In principle, any given state of a 1d system can be ex-
pressed as a MPS:

|ψ⟩ =


{σl}

cσ1...σL |σ1σ2 . . . σL⟩

SVD
=


{σl}

Mσ1 · Mσ2 · · ·MσL |σ1σ2 . . . σL⟩, (1)

where σl denote single-particle quantum numbers (e.g., σl =↑,↓
for a spin-1/2 system). The mathematical algorithm which allows
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to obtain the matrices Mσl from the coefficients cσ1...σl is the so-
called singular value decomposition (SVD). For an arbitrary 1d
state, the dimension χ of the matrices (which is often called bond
dimension) grows exponentially with the size L of the system. The
idea of a ground state DMRG calculation is to fix χ to a value much
smaller than eL and to determine the matrices Mσl variationally.
The reasonwhy this is a reasonable approximation invokes the no-
tion of entanglement. If one cuts the system and the amount of
entanglement between left and right half is given by S, then the
matrix at the cut site needs to be of dimension χ ∼ eS to en-
code this. The entanglement, however, is not an extensive quan-
tity, S ≠ S(L), but follows an area law—and the area between two
1d chains is a constant [9,10]. In other words, the ground state of
one-dimensional systems1 is entangled only locally, and this is per-
fectly coded by a MPS. Finally, the notion of a matrix product state
can be generalized to operators so that all ‘ingredients’ for DMRG
calculations are elegantly expressed using the same concepts
[11–17]. One can show that each operator A can be recast as a

1 More precisely, of gapped 1d systems governed by local Hamiltonians.
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matrix product operator (MPO)

A =


{σl}


{σ̃l}

Aσ1,σ̃1 · Aσ2,σ̃2 · · · AσL,σ̃L |{σl}⟩⟨{σ̃l}| (2)

if one again allows for an exponentially large bond dimension
χ ∼ eL [2]. Fortunately, most physical observables have a rep-
resentation in terms of a MPO with a small χ = O(1) that can
be obtained by mere inspection; e.g. purely local operators Al =

1 · · · 1 · Al · 1 · · · 1 trivially are a MPO with χ = 1 (we will discuss
a more complex example in Section 3.3).

Time evolution—Following the invention of the ground state
DMRG [3,4], several algorithms were developed to simulate the
real time evolution [18–23]. This allows to compute correlation
functions ⟨gs|A(t)B|gs⟩2 or to calculate the evolution of observ-
ables ⟨ψ |A(t)|ψ⟩ in arbitrary initial states. One of the most com-
mon approaches is the so-called time-dependentDMRG,which can
be formulated very elegantly using matrix product states. Its basic
idea is to split up the time evolution into small steps, exp(−iHt) =

exp(−iH∆t) exp(−iH∆t) . . . and to Trotter-decompose [32] the
exponentials via exp(−iH∆t) = exp(−iha∆t) exp(−ihb∆t) +

O([∆t]2)3 into factors which only contain local, mutually commut-
ing terms ha,b such as nearest-neighbor Heisenberg spin interac-
tions S⃗1S⃗2. Local terms, however, can be applied straightforwardly
to aMPS—they act only on thematrices living at the corresponding
sites, e.g.:

Mσ1 ,Mσ2
exp(−iS⃗1 S⃗2∆t)

−→ f (Mσ1 ,Mσ2)
SVD
−→ M̃σ1 , M̃σ2 . (3)

The main tool to bring the resulting state back to the form of a
MPS is again the singular value decomposition. The algorithm is
explained in great detail in the literature [2] and will also be made
more explicit in Section 4.

In order to approximate ⟨gs|A(t)B|gs⟩ or ⟨ψ |A(t)|ψ⟩ to a certain
accuracy, the dimension of the matrix product state needs be
increased with time, often even exponentially. Physically, this is
due to the buildup of entanglement in the system, and it limits
the accessible time scales. Modified algorithms such as transverse
folding [33] hold the promise of substantially extending the range
of simulations, but implementing them in practice requires some
effort (for a comprehensive overviewof other available approaches
see Ref. [2] and references therein). It is one of the goals of this
paper to discuss a few simple ‘recipes’ that allow to reach larger
times in DMRG calculations. In particular, wewill investigate if the
Schrödinger and Heisenberg pictures of quantum mechanics can
be combined efficiently.

Finite temperatures—Standard DMRGmethods allow computing
the time evolution of a pure state and are thus not directly
applicable at finite temperatures. In order to simulate dynamics at
T > 0, one can use operator space DMRG [34,35], or – equivalent
mathematically – one can express the thermal statistical operator
ρT ∼ e−H/T as a partial trace over a pure state |ΨT ⟩ living in
an enlarged Hilbert space where auxiliary degrees of freedom Q
encode the thermal bath [36–40]4:

ρT = TrQ |ΨT ⟩⟨ΨT |. (4)

A finite-T correlation function can in principle be obtained
straightforwardly by carrying out real- and imaginary time
evolutions of the state |ψ∞⟩ which purifies ρT at T = ∞ [2]:

CAB
T (t) = Tr


ρTA(t)B


= ⟨ψT |A(t)B|ψT ⟩ ∼ ⟨ψ∞|e−H/2TA(t)Be−H/2T

|ψ∞⟩. (5)

2 For other approaches to calculate correlation functions, see Refs. [1,24–31].
3 In practice, higher-order approximations are used; see, e.g., Ref. [2].
4 Various other ways to incorporate finite temperatures within DMRG, e.g., using

minimally entangled typical thermal states [41], can be found in Refs. [42–47].

Since ρ∞ ∼ 1, the state |ψ∞⟩ is known; it is given by a product of
local states,which for a spin-1/2 system read |ψ∞⟩ ∼ | ↑ ↓Q ⟩−| ↓

↑Q ⟩. It is another goal of this paper to recapitulate recent ideas [40,
34] of how to extend the range of real-time DMRG simulation at
finite temperature in a didactic way.

Structure of the paper—Wewill discuss a few simple ‘recipes’ that
allow to reach larger times in DMRG calculations. The combina-
tion of the Schrödinger and Heisenberg pictures is investigated in
Section 2. Prior ideas of how to extend the range of finite temper-
ature calculations are presented in a didactical way in Section 3.
We specifically aim at an audience of beginners and ask: Assuming
that one has a standard MPS based DMRG code at hand, what are
the most important practical steps necessary to incorporate these
recipes?Wewill particularly elaborate how to incorporate Abelian
symmetries [48]. For colleagues new to the realm of DMRG, we try
to advocate the method in general by showing how straightfor-
wardly its core algorithms can be implemented within the python
programming language (Section 4). Throughout this paper, we per-
form our DMRG calculations using a fixed small discarded weight
and a 4th order Trotter decomposition of the time evolution oper-
ators.

2. Schrödinger vs. Heisenberg picture

2.1. General aspects

Let us assume we want to compute the time evolution of an
observable A in a given state |ψ⟩,

⟨A⟩ψ (t) = ⟨ψ |A(t)|ψ⟩, (6)

or similarly at finite temperature by enlarging the Hilbert space
and choosing |ψ⟩ as the state which purifies the initial densityma-
trix, ⟨A⟩ρ(t) = Tr [ρA(t)] = ⟨ψρ |A(t)|ψρ⟩. The most straightfor-
ward way to evaluate Eq. (6) within DMRG is to simulate e−iHt

|ψ⟩.
This corresponds to a time evolution in the Schrödinger picture. If
one expresses A as amatrix product operator, one can alternatively
switch to the Heisenberg picture and calculate the operator time
evolution eiHtAe−iHt [11–13,48,14–17]. This is equivalent mathe-
matically but different algorithmically since eiHtAe−iHt might have
amore efficient representation in terms of aMPO than e−iHt

|ψ⟩ has
in terms of aMPS (or vice versa). For example, the Schrödinger pic-
ture is certainly advantageous whenever |ψ⟩ is close to an eigen-
state ofH . Of course, it is possible to simply split the time evolution
between the Schrödinger- and Heisenberg picture,

⟨A⟩ψ (2t) = ⟨ψ |eiHtA(t)e−iHt
|ψ⟩, (7)

and evaluate e−iHt
|ψ⟩ aswell as A(t) individually. Generally speak-

ing, if one stops each simulation at times tψ and tA where a fixed
bond dimension is reached, one can always reach larger time scales
tψ + tA > tψ , tA.5 In practice, however, tψ might be significantly
smaller than tA or vice versa, and the additional effort to implement
Eq. (7)might simply not be justified.Wewill nowdiscuss this using
an instructive example.

2.2. Examples

We consider the time evolution of a local spin operator Szl under
the XXZ spin chain Hamiltonian:

H =

L−1
l=1


1
2


S+

l S−

l+1 + S−

l S+

l+1


+∆Szl S

z
l+1


+ b

L
l=1

Szl , (8)

5 This is not hindered by a more costly ‘overlap’ calculation; see Section 2.3 for
details.
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