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a b s t r a c t

Many experiments can be interpreted in terms of random processes operating according to some inter-
nal protocols. When experiments are costly or cannot be repeated only one or a few finite samples are
available. In this paper we study data generated by pseudo-random computer experiments operating ac-
cording to particular internal protocols. We show that the standard statistical analysis performed on a
sample, containing 105 data points or more, may sometimes be highly misleading and statistical errors
largely underestimated. Our results confirm in a dramatic way the dangers of standard asymptotic sta-
tistical inference if a sample is not homogeneous. We demonstrate that analyzing various subdivisions
of samples by multiple chi-square tests and chi-square frequency graphs is very effective in detecting
sample inhomogeneity. Therefore to assure correctness of the statistical inference the above mentioned
chi-square tests andother non-parametric sample homogeneity tests should be incorporated in any statis-
tical analysis of experimental data. If such tests are not performed the reported conclusions and estimates
of the errors cannot be trusted.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Outcomes of experiments or surveys in various domains of science are usually interpreted as observed values of one or more random
variables obeying some, in general, multivariate probability distribution. Gathered data are often assumed to be simple random samples.
A random sample is simple if it is homogeneous and all trials are independent.

The dangers of statistical inference based on finite samples are well known to statisticians but many experimentalists seem to be
unaware of them. Let us cite here [1]: ‘‘incorrect assumptions of ‘simple’ random sampling can invalidate statistical inference’’.

Computer packages for statistical analysis produce descriptive statistics and outcomes of various significance tests. However these
packages cannot replace statistical thinking and mistaken conclusions are often drawn in a variety of studies because the researchers do
not appreciate the significance of the assumptions about the probability distribution underlying a model and for other reasons [2].

Particular caution is needed in the case where only one large sample of data is available and we want to make a sound statistical
inference based on it, as in for example, the data obtained in the experiments of Christensen et al. [3] and Giustina et al. [4]. One may not
simply assume that the experimental data are ‘simple’ random samples without verifying it.

Many experimentalists believe, when a sample size is 104 or larger, that a sample average and a sample mean error give reliable
information about studied statistical population even if a studied sample is not a perfect simple random sample. In this paper we show that
such belief is unjustified and a careful study of sample homogeneity is always necessary. Some experimental devices, operating according
to specific internal protocols may produce strange, but legitimate, outcomes which usually would be considered as outliers and rejected.

In order to explore possible anomalies in large finite samples, we study several pseudo-random computer experiments generating time
series of discrete data according to different internal protocols. We use the term ‘‘internal’’ to indicate that the details of the protocol are
inaccessible to any person analyzing the data, as in real-life applications. We demonstrate that standard statistical inference of one or a
few of large samples (containing as much as 107 data points) generated by some of these protocols in terms of standard errors and various
confidence intervals can be highly misleading.
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By subdividing our samples into 100 bins (each bin containing 105 data items) and by performing 4950 chi-square bin-to-bin
compatibility tests we demonstrate that samples produced by some of our computer experiments are not homogeneous, explaining the
invalid conclusion based on the performed significance tests. For the sampleswhich are homogeneousweobtain close to perfect agreement
with a corresponding probabilistic model.

In our paper we not only demonstrate the dramatic consequences of sample inhomogeneity but we suggest which preliminary
supplementary statistical tests of the data should be performed in order to assure a sound statistical inference. These tests detected the
anomalies in our computer generated samples without making use of any knowledge about a particular protocol.

2. Standard statistical inferences

Let us assume that A can take k different values: a1, a2, . . . , ak. In a long run of the experiment we obtain a random sample S =

{x1, x2, . . . , xN} of sizeN which according to standard samplingmethods is interpreted as an observation of amultivariate randomvariable
{A1, A2, . . . , AN} where Ai are independent and identically distributed random variables (i.i.d.): Ai ∼ D.

The empirical frequency distributions of various outcomes fi = #(xj = ai)/N are found and believed to approach the probabilities
provided by the theory. Furthermore the probability distribution of the variable Ā =

1
N

N
i=1 Ai is, due to the central limit theorem (CLT),

believed to be well approximated by a normal distribution N(µĀ, σ
2
Ā ) with µĀ = µA and σĀ = σA/

√
N where µA and σA are the mean

and the standard deviation of the random variable A. In spite of the fact that CLT is valid when N tends to infinity it is often assumed that
already for N ≥ 30 the normal distribution provides a reasonable approximation and that the unknown variance σ 2

A can be replaced by a
value of its unbiased estimator s2:

s2 =

N
i=1

(xi − x̄)2

N − 1
. (1)

A sample mean x̄ is considered as a good estimate of ⟨A⟩ = µA and a standard error of the mean SEM = s/
√
N as a good estimate of

σĀ = σA/
√
N .

As N increases the confidence in the validity of the approximation by a normal distribution is increasing and the errors become smaller
and smaller. The most exact probabilistic statement, if the normal-distribution approximation is valid, can be expressed in terms of the
confidence intervals Iα:

Iα =


x̄ − zα/2s/

√
N, x̄ + zα/2s/

√
N


(2)

saying that the probability that the interval Iα covers the unknown value µA is (1 − α).
If the asymptotic normality of the distribution is not assumed, the Chebyshev’s inequality can be used and the confidence interval (2)

is replaced by

Ic =


x̄ − cs/

√
N, x̄ + cs/

√
N


(3)

and the probability that the interval Ic covers the unknown value µA is (1 −
1
c2 ).

Of course the estimation of SEM = s/
√
N is valid if the variables Ai are independent and identically distributed random variables (i.i.d.):

Ai ∼ D. But this has to be carefully checked and not taken for granted. The Chebychev’s inequality for the finite samples is valid under the
supplementary assumptions [5,6].

3. Experiments and invisible internal protocols

Let us imagine a following experiment. A signal is entering a measuring device (considered to be a black box) and from time to time
some discrete outcomes are produced and a sample S is obtained. If the outcomes seem to be randomly distributed we could assume a
following probabilistic model:

• a signal is described by a probability distribution p1(m)

• a state of the device at the moment of a measurement is described by a probability distribution p2(n)
• the output of the device is one of discrete values A(m, n).

If this simple probabilistic model is assumed then the expectation value:

⟨A⟩ =

m,n

A(m, n)p1(m)p2(n). (4)

The probability distribution p(A(m, n) = a) and the standard deviation σA are easily found and compared with experimental data.
As we mentioned above we do not know how our device produces successive outcomes. Therefore we perform several Monte Carlo

simulations using various possible internal protocols and we compare the properties of the finite samples generated by these protocols.
We define three different protocols:

Protocol 1 = (N1, 1,m):

• generate one value of n and one value ofm using p1(m) and p2(n)
• evaluate A(m, n) and output this value
• repeat the process N1 times in order to create a sample of size N = N1.
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