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a b s t r a c t

Numerical kinetic models of plasma turbulence require careful treatment of conserved quantities. In the
collisionless limit, numerical dissipation can impact entropy in a non-controlledmanner. In this paper, the
impact of the error in entropy conservation is investigated. In a simulation of ion-acoustic turbulence, a
large error (15%) in entropy conservation is found. Surprisingly, this error is independent of the numerical
method, scheme, or number of grid points. Adding a collision operator resolves this issue, but only if the
collision frequency is large enough that it modifies the qualitative time evolution of observables, such as
electric field amplitude, anomalous resistivity, or phase-space structures.

© 2015 Elsevier B.V. All rights reserved.

For a wide range of astrophysical and laboratory plasma
phenomena, collisions are negligible. Then, the evolution of the
particle distribution in phase-space is usually described by the
Vlasov equation, which translates the fact that the distribution is
constant along particle orbits.

Accurate numerical simulation of collisionless plasmas requires
careful treatment of conserved physical quantities, such as total
mass, total energy and total entropy. For example, to obtain
the turbulent steady-state accurately, spurious heating must be
avoided. The numerical treatment of kinetic nonlinearities such
as particle trapping is particularly challenging. Indeed, trapping
involves the filamentation of phase-space (phase-space mixing),
whereby an initially smooth particle distribution is mixed by the
particle motion into very fine structures. Phase-space filaments
eventually become smaller than the numerical grid size. Then
information is inevitably lost, which breaks the conservation of
entropy. This problem is well-known for Vlasov codes [1], but the
impact on physics of interest, i.e. the evolution of coarse-grained
observables, is unknown.

In overcoming the numerical issues associated with phase-
space filamentation, one can distinguish three classes of approach.
The first approach is to add a collision operator to the model [2],
even if the collision frequency has to be artificially increased
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to overcome the issues. The second approach is to add artificial
filters [3] or damping [4] (it can be argued that Fourier codes [5]
belong to this class). The third approach is to simply let numerical
discretization replace collisions to dissipate the smallest scales and
coarse-grain average the distribution function in an uncontrolled
manner. For all three classes of approach, however, a concern is
that simple models of collisions, numerical filtering, or numerical
dissipation, are artificial, and may impact the physics of interest.

In this work, we report a systematic spurious entropy produc-
tion, of 15% of the initial entropy, when the fully-nonlinear tur-
bulent stage is reached, regardless of the numerical treatment.
Indeed, the issue is not limited to Vlasov codes. The same error is
found for fundamentally different types of simulation, i.e. Vlasov
(semi-Lagrangian) and particle-in-cell (PIC), different schemes and
different choices of grid sizes. This is shown in Fig. 1, which is the
main figure in this paper, and which is discussed in detail in Sec-
tion 3. Furthermore, the error is relatively insensitive to parame-
ters of the physical system. As expected, a collision operator with
velocity diffusion resolves the issue, but only if the collision fre-
quency is so large that it dominates the long-time evolution.

1. Model

We restrict the analysis to a collisionless, one-dimensional,
ion–electron plasma with an initial homogeneous current. We
choose physical parameters such that the evolution of the plasma
is dominated by ion-acoustic turbulence. Ion-acoustic waves
[6,7] are longitudinal electrostatic waves, which are commonly ob-
served in space and laboratory plasmas. The nonlinear saturation
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Fig. 1. Time-evolution of the perturbed electron entropy. Inset: zoom on the early
stage, in semi-logarithmic scale. The simulation parameters are given in Section 1.4.

Table 1
Normalization.

Physical quantity Normalization constant

Time ω−1
p,e

Particle charge e
Mass me
Length λD
Velocity vT ,e
Distribution f n0/vT ,e
Electric field mev

2
T ,e/(eλD)

Energy mev
2
T ,e

has been studied from the early 1960s [8–12]. Theory and exper-
iments indicate that ion-acoustic waves are key agents of mag-
netic reconnection (via anomalous resistivity) [13–16], turbulent
heating [17], particle acceleration [18], and play important roles
in the context of laser–plasma interaction [19]. Furthermore, ion-
acoustic waves constitute the basis for dominant fluctuations in
magnetically confined plasmas. Indeed, drift-waves [20] arise from
the ion-acoustic branch, modified by inhomogeneities and geom-
etry effects. Linear instability of ion-acoustic waves requires that
the velocity drift exceeds some finite threshold. However, nonlin-
ear theory [21–23] predicts that ion-acoustic turbulence can grow
nonlinearly, even for small drifts.

In the present work, we use a model of ion-acoustic turbulence
as a paradigm for kinetic models in the presence of strong
resonances.

1.1. Normalization

It is appropriate to normalize physical quantities with the
constants listed in Table 1, where λD is the Debye length, e = qi =

−qe is the elementary charge, n0 is the spatially-averaged plasma
density, and ms, ωp,s and vT ,s = (2Ts/ms)

1/2 are the mass, plasma
frequency and thermal velocity, respectively, of species s (s = i, e).

1.2. Model description

The evolution of each particle distribution, fs(x, v, t) is given by
the Vlasov equation,

∂ fs
∂t

+ v
∂ fs
∂x

+
qsE
ms

∂ fs
∂v

= C(fs), (1)

where C(fs) is an eventual collision operator.
The evolution of the electric field E(x, t) satisfies a current

equation,

∂E
∂t

= −


s

msω
2
p,s

n0qs


vfs(x, v, t) dv. (2)

Table 2
Relative error (order-of-magnitude) in energy and entropy conservation.

Total energy Entropy

Dissipative bump-on-tail 10−5 10−5

Ion-acoustic turbulence 10−3 10−1

The initial electric field is obtained by solving Poisson’s equation.
Analytically, satisfying Eqs. (1)–(2) at all times, if Poisson equation
is satisfied at t = 0, is equivalent to satisfying Eq. (1) and
Poisson equation at all times (given that the collision operator
conserves particle number andmomentum). Numerically, we have
thoroughly checked that there is no significant discrepancy in the
results between the method chosen in this work (solving Poisson
at t = 0 and solving Eq. (2) at each time step), and a method that
can seem more natural (i.e. solving Poisson at each time step).

The model is applicable as a statistical description of a
plasma when electromagnetic perturbations are dominated by
electrostatic waves in one direction. This is relevant for plasma
immersed in a strong, relatively homogeneous magnetic field [24].

1.3. Numerical codes

To investigate the impact of the numerical method, and of the
numerical scheme, we perform the same simulation with three
different kinetic codes.

The first code is the semi-Lagrangian code COBBLES, which
is based on the splitting method [3], and on the Constrained-
Interpolation-Profile, Conservative Semi-Lagrangian (CIP–CSL)
scheme [25]. In the CIP–CSL scheme, the evolution of space- and
velocity-integrals of the distribution function is computed from
separate kinetic equations, along with the evolution of the distri-
bution function itself, in a way that keeps a flux balance between
neighboring grids. The implementation guarantees the local con-
servation of density, up to the machine precision. COBBLES was
described, verified, validated and benchmarked in Ref. [26] for a
dissipative bump-on-tail (single species) model. COBBLES is capa-
ble of accurate long-time simulations, in various regimes, including
chaotic ones [27,28], of the bump-on-tail instability in a one-
species, 1D plasma. COBBLES was recently extended to treat two
species kinetically. The extended code and its diagnostics are ver-
ified and benchmarked in the Appendix, by recovering several
results of Ref. [12], including statistical properties of anomalous
resistivity.

As a side note, and a general message in computational science,
let us emphasize that the conservation properties strongly depend
on the simulated physics. With the same COBBLES code, for
two-species ion-acoustic turbulence, compared to one-species
simulations of the dissipative bump-on-tail instability [29], the
conservation of entropy and total energy is degraded by several
orders of magnitude. Table 2 shows the order-of-magnitude of
relative error in energy and entropy conservation for these two
models for the same code (COBBLES).

The second code is the semi-Lagrangian code V1D1, which was
developed at the British Antarctic Survey in Cambridge, originally
by R.B. Horne and M.P. Freeman, and then further by C.E.J. Watt.
V1D1 is based on the MacCormack method, which is an explicit
finite difference method with predictor–corrector algorithm. It
was used in many works, e.g. Refs. [30,12].

The third code is a simple PIC code, PICKLES (Particle-In-Cell
Kinetic Lazy Electrostatic Solver), which is based on a fourth-
order Runge–Kutta method. PICKLES can handle both full-f and
δf treatments [23]. In this paper we use the δf version only. We
denote the number of marker-particles per species as Np.

1.4. Numerical simulations

Unless stated otherwise, and except in the appendix,we analyze
a single physical system. The mass ratio is mi/me = 4. The system
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