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a b s t r a c t

In this paper we present a novel Lattice Boltzmann model for immiscible fluids with soluble surfactants
adsorbing at the interface with improved numerical and extended physical properties. The numerical
improvements are based on the use of an analytical representation of a regularized delta-function
in the surface free energy functional for the surfactant. Furthermore, the physics of the system have
been extended to differential solubility of the surfactant combined with the use of Frumkin sorption
behaviour. This enables the scheme to approach more realistic systems like foams and emulsions. This
novel scheme is much superior in numerical stability than our previous scheme, based on a squared
gradient approximation. Furthermore, we have observed the phenomenon of interface broadening under
certain conditions. This phenomenon limits the surface pressure to about 30% of the capillary pressure
of a bare droplet. It remains to be investigated whether this interface broadening reflects some physical
effect, as has been observed for proteins.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Our previous model, concerning emulsion droplets stabilized
by surfactants, has been the first model able to describe this
system with realistic sorption isotherm and adsorption kinetics
for flowing emulsion droplets with soluble surfactants [1]. It is
a so-called phase field model, where the interface is represented
by a continuous order parameter [2]. These types of models are
also known as diffuse interface, Cahn–Hilliard or Ginzburg–Landau
models [3,4]. The motion of the order parameter, and thus the
interface, is governed by the gradient in a chemical potential,
derived from a free energy functional. In this functional the
surface free energy is represented with the squared-gradient of
the order parameter, which is an approximation of the delta-
function—in the spirit of vanderWaals. The phase field model has
been implemented in Lattice Boltzmann, building on the earlier
Lattice Boltzmann models for immiscible fluids developed by
the group of Yeomans [5]. The big advantage of the phase field
method is that moving interfaces do not have to be tracked by the
numerical scheme, and boundary conditions for moving contact
lines naturally follow from the free energy formalism.
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Our phase field model has shown that Langmuir sorption
isotherms and Ward–Tordai sorption kinetics are a direct conse-
quence of the prescribed free energy functional, and the assump-
tion of a constant diffusion coefficient for the surfactant in the
bulk [1]. Our free energy functional has been based on the sharp
interface model of Diamant and Andelman [6,7]. The developed
model has only been implemented in 2D, andwe have tested only a
simple flow problem of a droplet in shear flow. In agreement with
theory, the surfactant on the interface migrates towards the inter-
face with the highest curvature [1].

After its inception, our model has been further developed by
others [8–11]. It is shown in [8,9], that the model can be extended
towards (1) the Frumkin sorption isotherm, via introducing
self-interaction between surfactants cf. [7], and (2) differential
solubility of the surfactant in the bulk phases [8]. However, the
model extension for differential solubility has not been explored
numerically. Several of these studies have also shown that our
phase fieldmethod describes the collision between two surfactant-
laden droplets correctly [8,9]. Simulations show that a thin film
forms between the droplets, which does not rupture due to the
generation of Marangoni stresses.

Our earlier model is derived from the sharp-interface model
of Andelman and Diamant, via approximating the Dirac delta-
function by a squared-gradient term. A recent paper poses that this
representation of the delta-function leads to numerical problems
at high interface loading with surfactants [9]. These problems are
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remediated via alternative analytical formulations of the delta-
function, as can be found in [12,9,13,14].

Recently, it is shown that the Lattice Boltzmann implementa-
tion of the phase field method can be improved using alternative
collision operators [15–17], like in the multiple-relaxation time
(MRT) LB scheme [18]. Recently, we have been investigating a spe-
cial case of a MRT scheme, namely the Two Relaxation Time (TRT)
scheme [19–22]. We have shown that the TRT scheme gives a sig-
nificant reduction of spurious velocities at wetting boundary con-
ditions [23]. Similar improvements are expected for our surfactant
model.

Hence, in this paper we describe the numerical investigation
of several improvements of our original phase field method for
soluble surfactants, which are: (1) an analytical representation
of the delta-function, (2) the self-interaction between surfactants
leading to a Frumkin sorption isotherm, and (3) the introduction
of differential solubility for the surfactant. Differential solubility
is desired if one wants to simulate real dispersed systems like
emulsions or foams, where surfactants are only soluble in one of
the bulk phases. The improved model has been implemented in
Lattice Boltzmann using the TRT collision operator. In our analysis
we will investigate a planar interface, and compare the adsorption
and order parameter profiles with analytical predictions—with
special emphasis on interface broadening. Subsequently, we
investigate a circular drop, and the surface pressure due to
surfactant adsorption.

2. Phase field method

2.1. Governing equations

With the phase field method we will solve the dispersed flow
problem, and the transport of surfactant in the dispersed system.
The dispersed system is represented by the order parameter φ, the
velocity field by uα , and the surfactant by a second order parameter
ψ . The maximumψ = 1 is attained at maximal surfactant loading
of the interface. Our phase field model will solve the following
equations [5,2,24,25,1]:

∂tφ + ∂αφuα = ∂αMφ∂αµφ

∂tψ + ∂αψuα = ∂αMψ∂αµψ

∂tρuα + ∂βρuαuβ = −∂β(pδαβ + Pαβ)+ ∂αρν(∂αuβ + ∂βuα) (1)

ρ is the fluid density, p is the hydrostatic pressure, ν is the viscosity,
Mφ and Mψ are mobilities. µψ and µφ are chemical potentials,
and Pαβ is the (Korteweg–de Vries) stress tensor. Indices α and β
indicate Cartesian coordinates, and we have assumed the Einstein
convention of implied summation over double indices. The driving
forces for transport, i.e. the chemical potentials and the stress
tensor, are derived from a free energy functional. With these
thermodynamic driving forces, the above equations can be viewed
as generalized convection–diffusion and Navier–Stokes equations.
All the intricaties of the dispersed flow problem with surfactants
will emerge from the specifics of the free energy functional, which
is discussed in the next section.

2.2. Free energy functional

The free energy density functional Ftot is a function of the order
parameters φ and ψ . We have divided that in three contributions:

Ftot = Fφ + Fψ + F0. (2)

Fφ gives the phase separation between the immiscible phases of
the dispersed system, and is taken from the Cahn–Hilliard theory.
Fψ is the bulk free energy of surfactant in solution, and determines

also the solubility of the surfactant in both phases. F0 is the surface
free energy due to absorption of the surfactant.

The Cahn–Hilliard free energy with a double well potential is as
follows [26]:

Fφ = −
A
2
φ2

+
A
4
φ4

+
κ

2
(∇φ)2. (3)

If the width of the interface is not modified by surfactant
adsorption, the following relations hold [5]: φ2

b = 1, ζ 2
= 2κ/A,

and σ0 = 4κ/3ζ , which is the interfacial tension of the clean
interface. ζ is the width of the diffuse interface. The bulk value of
the order parameter, φb, is an arbitrary scaling parameter, which is
set at unity.

The free energy of the surfactant in the bulk solution is equal to:

Fψ = θ [ψ logψ + (1 − ψ) log(1 − ψ)] +
β

2
ψ2

+ γψφ. (4)

The first three terms are due to the assumption of a regular
solution, cf. [1], while the last term gives different solubility in
the bulk phases. β describes the strength of the self-interaction
between surfactants, and γ describes the difference in the
interaction strength of the two bulk phases with the surfactant.
The differential solubility is mathematically equivalent with the
solvation energy terms introduced by Onuki in the free energy
density functional for electrolytes solutions at interfaces [27].

The above functional limits the surfactant concentration to the
range 0 < ψ < 1. θ is linear in kT/a3 with a the molecular dimen-
sion of the surfactant, and kT the energy scale of thermal fluctua-
tions. We note that the model below is athermal, and θ presents
just a scaling factor—which can be set to unity for convenience.

The surface free energy due to surfactants is given by:

F0 = −
α

2
ψδ̂(x) (5)

which states that the surface free energy is reduced linear with
the amount of absorbed surfactants. Here, δ̂(x) the approximated
Dirac-delta function, for which several options are given below.

Earlier we have derived from the sharp-interface model of
Andelman and Diamant, via approximating the Dirac delta-
function with a squared-gradient term [1], that is:

δ̂SQ (x) ≈ (∇φ)2. (6)

In the interfacial region the order parameter changes in a smooth
manner as φ(x) = φb tanh(x/ζ ). The location of the interface
is indicated by φ = 0. Substitution of this profile in the
squared gradient shows that it indeed approximates theDirac delta
function. Engblom has proposed some analytical alternatives for
the delta-function [9]:

δ̂E2(x) ≈ (1 − φ̃2);

δ̂E4(x) ≈ (1 − φ̃)2(1 + φ̃)2 = (1 − φ̃2)2
. (7)

In case of the regular profile of a flat interface, φ = φb tanh(x/ζ ),
the squared gradient approximation scales linear with the E4
approximation ζ 2δ̂sq(x) = δ̂E4(x), as follows from substitution of
φ(x) into the squared gradient expression.

From the total free energy,we derive the chemical potentials for
the order parameter φ and the surfactant concentrationψ , written
in general terms:

µψ =
δFtot
δψ

= θ [logψ − log(1 − ψ)] + βψ + γφ − αδ̂(x) (8)

and

µφ =
δFtot
δφ

= −Aφ + Aφ3
− κ∇2φ + γψ + µ̂φ . (9)
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