
Computer Physics Communications 199 (2016) 22–28

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

The efficiency of geophysical adjoint codes generated by automatic
differentiation tools
A.V. Vlasenko ∗, A. Köhl, D. Stammer
Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Germany

a r t i c l e i n f o

Article history:
Received 14 January 2015
Received in revised form
4 October 2015
Accepted 18 October 2015
Available online 30 October 2015

Keywords:
Sensitivity estimation
Computational efficiency
Data assimilation

a b s t r a c t

The accuracy of numerical models that describe complex physical or chemical processes depends on the
choice ofmodel parameters. Estimating an optimal set of parameters by optimization algorithms requires
knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity
computation involves differentiation of the model, which can be performed by applying algorithmic
differentiation (AD) tools to the underlying numerical code. However, existingAD tools differ substantially
in design, legibility and computational efficiency. In this study we show that, for geophysical data
assimilation problems of varying complexity, the performance of adjoint codes generated by the existing
AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran
(TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool
with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the
capability of each AD tool to handle modern FORTRAN 90–95 elements such as structures and pointers,
which are new elements that either combine groups of variables or provide aliases to memory addresses,
respectively. We show that, while operator overloading tools are the only ones suitable for modern codes
written in object-oriented programming languages, their computational efficiency lags behind source
transformation by orders of magnitude, rendering the application of these modern tools to practical
assimilation problemsprohibitive. In contrast, the application of source transformation tools appears to be
themost efficient choice, allowing handling even large geophysical data assimilation problems. However,
they can only be applied to numerical models written in earlier generations of programming languages.
Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that
urgently need to be solved to allow the continuous use of AD tools for solving geophysical problems on
modern computer architectures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

To date, numerical modeling is a widespread and generally ac-
cepted approach for solving complex mathematical equations of
physical, biological, or chemical processes in climate and earth sys-
tem sciences. However, the accuracy of respective solutions fun-
damentally depends on the choice of – typically uncertain – model
parameters. One therefore is usually faced with the following two
questions: (i) How sensitive are model solutions to the detailed
choice ofmodel parameters, and (ii)what is the optimal set of these
parameters required to minimize the difference between a simu-
lated process to a given set of observations. One elegant way to
answer these questions involves the computation of derivatives of

∗ Corresponding author.
E-mail address: andrey.vlasenko@uni-hamburg.de (A.V. Vlasenko).

the corresponding numerical model with respect to its parameters
or state variables [1–5].

Generally, model derivatives can be generated in three differ-
ent ways, the simplest of which is an estimation of approximate
derivatives by applying a finite difference method. Being simple,
however, this method is always plagued by approximation errors.
The second way is to derive the model derivatives manually. Such
differentiation leads to exact derivatives but is labor-intensive and
therefore impractical for large numerical models. The third option
is to use an algorithmic differentiation (AD) tool, which almost au-
tomatically provides the exact derivatives of any complex function
represented by a numerical code with only little extra effort by the
user.

For simplicity we introduce two definitions commonly used in
AD.We consider a numerical model as mathematical operator that
acts on state variables x = (x1, x2, . . . , xn) and returns an output
y = (y1, y2, . . . , yn) (e.g. state variables at the end of computa-
tion). Let J be the Jacobian matrix of y with respect to x and s be

http://dx.doi.org/10.1016/j.cpc.2015.10.008
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.10.008
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.10.008&domain=pdf
mailto:andrey.vlasenko@uni-hamburg.de
http://dx.doi.org/10.1016/j.cpc.2015.10.008


A.V. Vlasenko et al. / Computer Physics Communications 199 (2016) 22–28 23

an n-dimensional column vector, with only si element equal to one
and the rest to zero. The differentiation of ywith respect to xi pro-
duced by the AD tool can be presented as a multiplication of s by
J, where Js gives the derivative of y with respect to xi. The corre-
sponding computer code, generated by the AD tool, is called the
tangent linear model and the derivatives referred to as tangents.
The multiplication of sT J (superscript T means transpose) provides
the derivative of yi with respect to x. The corresponding computer
code, generated by the AD tool, is called the adjoint model and the
derivatives referred as adjoints. These two ways of differentiation
of a numerical model performed by the AD tool are referred as tan-
gent linear and adjoint modes,1 respectively. A further field of AD
tools is the computation of higher order derivatives. In particu-
lar, the second derivative, the Hessian matrix, or approximations
to it, are used in parameter optimization algorithms such as the
Gauss–Newton algorithm, and the posterior evaluation of the un-
certainties of the estimated parameters requires the inverse of the
Hessian.

Today, AD is a well-established field of applied mathematics,
formulated initially in the middle of the previous century. In de-
tail, AD techniques are based on the mathematical formalisms of
differentiation represented by a set of simple, well-known mathe-
matical operations. They are designed for the numerical differenti-
ation of mathematical functions of any complexity represented by
computer codes [6,7]. The resultant derivatives are exact up to the
numerical precision, i.e., no truncation is used so that no approxi-
mation errors appear in the output code.

By now more than 42 different AD packages exist, which were
developed for different applications and programming languages
(see www.autodiff.org for details). They use different strategies for
computing derivatives [8]. Among them source code transforma-
tion (SCT) and operator overloading (OO) are the most common
strategies [9]. SCT AD tools replace the original source code by a
new source code, usually in the same programming language that
includes the statements for computing user specified derivatives.
In contrast, theOOAD tools generally leave the original source code
as it is and the sequence of operations in the original source code
for the function to be differentiated remains unchanged. However,
it requires a change in basic data types for numbers and vectors
for supporting differentiation, and establishes a special polymor-
phism2 for mathematical operators called overloading. The change
of data type is done for all differentiating and differentiated vari-
ables (which may be done automatically by the AD tool) in such a
way, that any variable of a changed type holds both its actual value
and its derivative. Overloading reintroduces the original mathe-
matical operators in the source code by splitting each operator’s
action. An action of any overloaded elementary mathematical op-
erator depends on whether it is applied to the value of the variable
or to its derivative. For an actual value of the variable, the operator
remains the same as it was before the overloading, while it oper-
ates according to the rules of differentiation when being applied to
the derivatives of the variable.

Respective tools have been applied to a variety of problems
in many research areas [10–17]. But, although all these AD tools
simplify the computation of the derivatives, the computational
efficiency of these derivatives strongly depends on the internal
structure of the AD tool that produced it. In particular, existing
AD tools differ substantially in the design, readability and
computational efficiency of resulting numerical codes. Moreover,
the AD tools also differ by their ability to operate with various

1 The terms adjoint and tangent linearmodels should not be confusedwith terms
adjoint and tangent linearmodes.
2 Polymorphism is the ability of a function to be applied to different types of

variables. The result of application depends on the types of these variables.

high level programming languages. This difference in structure and
design of different AD tools has a great effect on the performance
of the adjoints that they produce. Applying these theories to real
geophysical problems remains a huge challenge given the size,
complexity, and often the non-linear nature of those problems.
Understanding the efficiency of existing adjoint codes is therefore
a prerequisite to applying them to real climate science problems.
Rather than developing new algorithms, the goal of this paper is to
analyze the practicality and efficiency of existing OO and STC based
AD tools for geophysical problems. We focus our study on adjoint
modes, since the computation of sensitivities in climate modeling
ismainly associatedwith the execution of adjointmodels. Based on
simple test problems, we evaluate the efficiency of each AD tool
with respect to computational speed, accuracy of the generated
adjoint, the efficiency of memory usage, and the capability of
each AD tool to handle modern FORTRAN 90–95 elements such as
structures and pointers.

In detail, we compare adjoint codes generated by Transforma-
tion of Algorithms in Fortran (TAF) [18] and Open_AD [19] and
TAPENADE [20] as the AD tools representing SCT approach. As for
the OO based AD tool, we choose NAGWare [21]. All these AD tools
have the tangent linear and adjoint mode for differentiation. We
note that the same derivatives can be obtained with either an ad-
joint or a tangent linear mode; which mode is more appropriate is
a question of efficiency.

Here, we focus on the performance of the adjoint mode of dif-
ferentiation, because most of difficulties related to memory usage
efficiency and execution runtime are typically associated with this
mode [22]. Our case studies are specifically intended to identify
strengths and weaknesses of the OO and SCT procedures and pro-
vide the corresponding benchmarks for their efficiency in climate
applications. The ability to operate with different programming
language features is also compared, and their effect on the com-
putational speed performance (CSP) is investigated. By doing so,
we expect to give recommendations to model developers guiding
their choice of the proper AD procedures.

The remaining paper is organized as follows. A brief summary
of the methodology for testing the compilers is given in Section 2.
The test-bed codes on which the efficiency of the compilers is
investigated is given in Section 3. Section 4 gives a short theoretical
overview of the differentiation machinery of the AD tools. Tests on
the compiler’s speed performance, accuracy and the efficiency in
memory usage are described in fifth and six sections respectively.
Section 7 describes the ability of the compilers to handle pointers
and user defined structures. The conclusion is given in Section 8.

2. Test of the AD tools

Our inter-comparison is based on the latest versions of TAF
(versions 2.3.5-2.8.4), Open_AD (versions S440, S469, S493),
Tapenade (version 3.10) and NAGWare (version 5.1) AD packages.
For a quantitative comparison of all three AD tools, we have
prepared several sample codes to test computational speed,
memory usage efficiency (MUE), accuracy, and compatibility with
different programming features such as pointers, structures, and
user defined data types. In order to test how the efficiency of
computations of adjoints depends on the hardware, the tests
were carried out on different platforms. All executables were
subsequently run on three different computer platforms (Intel
CoreDuo E8500 2 Gb DDR3, AMD Sempron AM2 2 Gb DDR2
and Intel Core I5-2500 8 Gb DDR3), and the corresponding
computational times were used to evaluate the performance.
Although the SCT AD tools allow utilizing any FORTRAN compiler,
the NAGWare AD tool is embedded in the NAG FORTRAN compiler,
and consequently compilation has to be done with this. To avoid
differences in execution time related to the usage of different

http://www.autodiff.org


Download English Version:

https://daneshyari.com/en/article/6919556

Download Persian Version:

https://daneshyari.com/article/6919556

Daneshyari.com

https://daneshyari.com/en/article/6919556
https://daneshyari.com/article/6919556
https://daneshyari.com

