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a b s t r a c t

The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of
reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code
is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and
T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding
cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked
against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra
have been validated against tabulated fusion reactivities and against an exact analytical expression for the
thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core
of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the interpretation and simulation of nuclear fusion experi-
ments it is frequently of interest to calculate the energy spectrum
of particles produced in various nuclear reactions occurring in the
fusion plasma. The energy of a reaction product depends on the
masses of the particles involved in the reaction and on the veloc-
ities of the reactants. Several different types of non-trivial veloc-
ity distributions occur in the magnetic and inertial confinement
fusion experiments of today, which significantly affect the shape
of the energy spectra of the particles produced in the fusion re-
actions. This is readily seen from measurements of neutron spec-
tra from the D(d, n)3He (DD) and T(d, n)4He (DT) fusion reactions
[1–3]. In these cases it is necessary to integrate over the reactant
distributions and the reaction cross section in order to calculate the
expected product spectrum.

This paper describes the Directional Relativistic Spectrum
Simulator (DRESS) code, which calculates product spectra from
two-body reactions between reactants with arbitrary velocity dis-
tributions. The input to the code is the masses of all particles
involved in the reaction, the reactant distributions and the emis-
sion direction of the product particle under consideration. The
calculations are performed by means of a Monte-Carlo simulation,
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using fully relativistic kinematics. The DRESS code has been devel-
oped primarily for the calculation of neutron and charged particle
spectra from the DD and DT fusion reactions. However, any other
two-body reaction can be simulated as well, by changing the cross
section and the relevant masses used in the code.

The problem of calculating fusion product spectra has pre-
viously been addressed analytically in [4,5], for the case of
Maxwellian reactant distributions. A general method for deriving
the product spectrum for arbitrary distributions, using classical
kinematics, is presented in [6], with applications to a selection of
special cases, such as a bi-Maxwellian, a beam distribution and an
imploding shell.

In addition to the analytical work, there are also several refer-
ences reporting the results of Monte-Carlo calculations of product
spectra [7–9]. The main difference between these calculations and
the DRESS code lies in the solution to the kinematics equation, to
obtain the product energy. In the DRESS code a closed form expres-
sion for the energy is used, which gives the energy directly in the
reference frame of interest. This is a different approach than the
traditional method of evaluating the energy in the center of mo-
mentum (COM) reference frame and transforming the result back
to the original frame. Furthermore, in addition to the calculated
product spectrum, the DRESS code also returns an estimate of the
Monte-Carlo uncertainty. This information is crucial in order to as-
sess the reliability of the result, but it is not available from any of
the earlier codes. Finally, in the references describing these codes
fairly little information is given about the details of the calcula-
tions,making it difficult for newusers to understandhow the codes
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work and what their range of applicability is. One aim of this pa-
per is therefore to provide a detailed description of all the steps
required to perform Monte-Carlo calculations of fusion product
spectra.

The paper is organized as follows. The steps carried out during
the Monte-Carlo calculations are presented in Section 2. Section 3
presents the tests that have been performed in order to validate
the DRESS code. Some examples illustrating the capabilities of the
code are given in Section 4. Finally, the main points of the paper
are summarized in Section 5, which also contains an outlook about
potential applications of the code.

2. Calculations

A reaction of the form a + b → α + β is considered, where the
reactants a and b can have arbitrary velocity distributions fa (va)
and fb (vb). The purpose of the calculations is to find the energy
spectrum of the product species α, emitted along a given unit
vector u. This is done by a Monte-Carlo simulation that proceeds
through the following sequence of steps:

1. Randomly sample reactant velocities, va and vb, from their re-
spective distributions, along with the corresponding statistical
weights, wa and wb.

2. Calculate the energy of the product α, Eα , when this particle is
emitted in direction u.

3. Calculate the differential cross section, dσ/dΩ , for the reaction
under consideration, in order to compute the reaction rate.

4. Repeat the steps above to collect statistics. The product
spectrum is obtained by collecting the Monte-Carlo events in
a histogram with the appropriate weights.

Step 1 is straightforward, relying on nothing more than standard
techniques involving pseudo-random numbers. Steps 2–4 are
described in more detail in the following sections.

2.1. Solve the kinematic equation

Throughout this paper, capital P is used to denote amomentum
four-vector with total energy E and three momentum p, i.e. P =

(E, p). The product of two four vectors, PaPb = EaEb − pa · pb,
is a scalar invariant, independent of the reference frame in which
the product is evaluated. In particular, the square of the four
momentum for a particle a is simply the mass squared of that
particle, P2

a = m2
a . All equations are written in units in which the

speed of light c is equal to 1.
For the two-body reaction considered here, four momentum

conservation dictates that

Ptot ≡ Pa + Pb = Pα + Pβ . (1)

Rearranging and squaring this equation gives

PtotPα =
s + m2

α − m2
β

2
, (2)

where s = P2
tot is the first Mandelstam invariant andmj is the mass

of particle j. If particle α is emitted in the direction specified by
u ≡ pα/pα , Eq. (2) becomes

EtotEα − ptot · upα =
s + m2

α − m2
β

2
. (3)

Substituting pα =

E2

α − m2
α

1/2 gives an equation for Eα that can
be put in the form of a quadratic equation, with solution

Eα =

A ±


A2 −


1 − B2

 
A2 + m2

αB2


1 − B2
, (4)

where

A =
s + m2

α − m2
β

2Etot
,

B =
ptot

Etot
· u.

Eq. (4) gives the energy of one of the particles produced in a
two-body reaction, when the particle is emitted in the direction of
the unit vector u. A solution of this formwas previously used in the
kinematics code described in [10]. Depending on the value of Ptot,
this equation can have 0, 1 or 2 physically allowed solutions.

2.2. Calculate the reaction rate

For given values of va and vb, the reaction rate per unit volume,
time and solid angle is given by

r (va, vb,u) =
nanb

1 + δab
|va − vb|

dσ
dΩ

(va, vb,u) , (5)

where na,b denotes the number densities (particles per unit
volume) of the respective reactant distributions. The Kronecker
delta, δab, is included in order to avoid double counting in the
case when the reacting particles come from the same distribution.
The contribution of each Monte-Carlo event to the reaction rate
is therefore given by this expression multiplied by the reactant
weights,

ri = wa,iwb,ir

va,i, vb,i,u


. (6)

In order to obtain dσ/dΩ , the DRESS code uses the parame-
terizations from [11] for the total cross section and a Legendre
polynomial expansion from the ENDF database [12] for the angular
dependence. The cross sections are given in the center-of momen-
tum (COM) reference frame, where pa = pb, and are evaluated by
Lorentz transforming the relevant four-vectors to the COM frame
(the velocity of the COM frame is β = ptot/Etot). The COM differen-
tial cross section is then transformed back into the original refer-
ence frame using the Jacobian as given in [13],

∂ΩCMS

∂Ω
=

p2α
Etot
s p∗

α (pα − Eαu · β)
, (7)

where the asterisk (*) is used to label COM quantities.

2.3. Generate the spectrum

AfterN iterations, the result of repeating steps 1–3 above is a set
of energies Eα,i and reaction rates ri (i = 1, 2, . . . ,N). The energy
spectrum of particle α is obtained by binning the values according
to the energies Eα,i. The flux of particles with energies between Ej
and Ej+1 is given by the average reaction rate for that bin,

Rj =
1
W

N
i=1

riθj,i. (8)

In this expression, W denotes the sum of the reactant weights,N
i=1 wa,iwb,i, and θj,i is defined to be one if Eα,i is in the energy

range of interest and zero otherwise. The variance of Rj (σ 2
R ) is

related to the variance of the terms ri contributing to the sum (σ 2
r ),

σ 2
R =

1
W 2

N
i=1

σ 2
r =

N
W 2

σ 2
r . (9)
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